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ABSTRACT: The automated gain control (AGC) units as well as other the non AGC equipment may be utilized in real-time 

power transmitting (RTPD) to coordinate the operations (RTD). In order to guarantee high-probability system security and to 

save operating costs, it is essential to correctly define the probable Wind Energy Forecast (WPFE) mistakes in RTD. The Cauchy 

Distribution (CD) is the perfect match for the "leptokurtic" characteristic of WPFE small-scale distributions, following previous 

research and our onsite testing. In this study the CD represents WPFE, which is suggested to provide a chance-controlled real-

time dispatch (CCRTD) paradigm (Chance-Constrained Randomization). The suggested CCRTD Model may be analytically 

converted to the "Convex Optimization Problem," which takes into consideration the dependency of the wind farm outputs 

because of the stability and attractive mathematical features of the CD. The inclusion of a refined control method that may also 

be used in combination with AGC systems is an additional aspect of the suggested model. This technique, when combined with 

the WPFE RTD Stage, allows the CCRTD to respond to the higher ramping power requirements as well as power variations on 

WPFE-generated transmittal lines. The proposed technique was shown to be trustworthy and efficient in numerical testing. It is 

nevertheless extremely effective as well as suitable of usage. Basically, I apply 20 winds farms data on different distribution and 

you see that in numerical portion and results shows that error in Cauchy distribution is less from other distribution which you 

can see in below plots and numerical tables. 

INDEX: “Stochastic Optimization, Wind-power Forecast error, Real-time dispatch, Cauchy Distribution” 

 

I. INTRODUCTION 

In the past year electricity penetration has risen markedly. This 

technique enables the CCRTD to more effectively respond to 

WPFE's of the additional ramping power requirements as well 

as the power fluctuation on RTD-phase of the transmission lines. 

Based on numerical tests, the proposed approach has been found 

to be both confident and effective. In the Meanwhile, it may be 

used extremely efficiently and in real-time [1-4]. Traditional 

Stochastic ED-Models are employed to handle wind-energy 

production uncertainties; however, there are two key flaws that 

must be dealt with. The first is how prediction inaccuracies may 

be defined in a manner that is precise and model-friendly. 

Another difficulty is to find out how uncertainties are properly 

included into operational limitations and target functions to 

create the Stochastic ED Model. The detailed summary for these 

many difficulties is provided below: 

a) First build a 'proper' WPFE model with a declining fitting 

error to reduce operating costs and enhance system reliability. 

Due to the similar and divergent conditions of wind, the wind 

power of different wind farm areas therefore it exhibits the 

correlation / complementary at different places which should be 

incorporated in proper. WPFE model. A model friendly WPFE 

model usually includes the following mathematical 

characteristics in a manner to ease operations of wind power 

systems: 

(1) For the representation of a linear combination of associated 

random variables a similar type distribution may be employed  

2) Inverse Cumulative Distribution's function has analytically to 

construct and transform the chance to constraints in the 

deterministic restrictions. 

(3) Analytically, the cost anticipated may be computed as 

integration. In ED problems, it is helpful to use WPFE models 

with some of the above characteristics. Neither has the ability to 

simultaneously access all of these features. 

b) CCED with changing degrees of trust provides a viable way 

of balancing safety and economic dispatch in the process of 

modeling uncertainty and resolving of problems. Wind power is 

unpredictable and imbalanced power transfer, with operating 

constraints, between the regulating generators, the branch flow 

and power breakage; make it more difficult to run the CCED [5-

10]. Moreover, inefficiency is the most serious restriction to 

handle problems related to opportunity, making it difficult to 

dispatch in the time. 

1) WIND POWER FORECAST MODEL:  

WPFE have typically been thought of as random variables with 

a predetermined distribution. According to certain research, 

small timescale WPFE-Distributions are "leptokurtic," which 
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implies they have both the high kurtosis as well as a fat tail. 

“Good kurtosis” denotes high prediction accuracy, but “fat tails” 

denotes frequency of the extreme occurrences & stores essential 

data reliably [11-15]. 

The author of the study examined the errors made by the 

Operational Wind-power Fore-casting Systems & determined 

that normal distribution failed to adequately reflect WPFE. 

Other current models, as the Weibull beta distributions, were 

unable to properly describe WPFE data's “heavy-tailed nature”. 

In dynamic ED, a detailed analysis of Output Correlation and 

dependency between varieties of wind-farms is required for 

power networks with numerous wind farms [16-20]. 

Neglecting the correlation might result in additional costs and an 

increased risk of transmission lines becoming overloaded. Xie 

developed a unique data-driven wind speed prediction 

framework in the literature by exploiting spatial-The 

transmission capacity limitations in their research were ignored 

because they were unable to construct a Random variable 

distribution described by the VD/TVD for Linear Combination. 

Recently the Gaussian Mixture Model (GMM) explained the 

related forecast error of the wind generation in CCED [21-28]. 

2) STOCHASTIC ED MODEL AND SOLUTIONS: Stochastic 

optimization (SO) modeling is often used by ED to decrease the 

uncertainty of wind turbines and the volatility. A stochastic 

optimization model with chance limits may be used to offset 

economic security with a changeable risk threshold in order to 

meet various criteria for reliability. Even if it is convex, the 

problem is difficult to solve. A scenario-based approach was 

created to replace this possibility. 

Offline uncertainty limitations are provided to accelerate online 

strategy planning in real time. Bilinear and linear formulations 

were given for limited opportunity of mixed integer 

programming utilizing a "Monte Carlo Simulation" 

decomposition method. The study authors have improved their 

approach to "stochastic programming" on problems relating to 

unit engagement via a dynamic decision-making method for 

wind scenarios. To estimate the target function, scenario 

sampling was employed. In order to solve a two-stage stochastic 

program of opportunity in research, a combination average 

sample approximation (AAA) technology was utilized. All these 

methods are centered on the construction of scenarios. If the 

sample size is adequate [23-25], the trust may be secured in a 

limited sense. The scenario-based method, on the other hand, 

carries considerable cost for computation, limiting its 

applicability when making choices in real time. In articles [6] 

and [28-34], the suggestion to mimic WPFE has been made 

utilizing 'Versatile Distribution,' and 'Truncated Versatile 

Distribution,' as proposed. Deterministic restrictions may be 

changed by means of quintile, VD/TVD chances, and the VD or 

the TVD may much better correspond with WPFE than 

Gaussians and Beta distributional and analytic mathematical 

formulations of their Inverse-CDF. The limitations on 

transmission capacity were ignored in their research since they 

were unable to construct a distribution of random variables for 

the linear combination represented with the VD/TVD. Recently, 

the "Wind output in CCED" was explained using the Gaussian 

Mixture Model [7], or "ramping capacity assignment" [9] related 

prediction mistakes. In these studies, a 4th order polynomial was 

used to match approximately the CDF of the Gaussian 

distribution and the possibility restrictions became deterministic 

limit. 

3) CONTRIBUTIONS: 

We analyse in this study statistically the distributions of WPFE 

in 20 wind farms in southwestern China. On-site research 

showed that CDs outperform other distributions, such as 

Gauzanne, Beta and Weibull in particular, for curtosis and tail 

behavior, as shown in researches [1, 10]. Therefore, we use the 

Affine AGC Control technique to define WPFE uncertainty in 

the model CCRTD (A-CCRTD). Thanks to its possible CD 

features, the A-CCRTD is analytically transformed into a 

stochastic issue with Convex Optimization. Some of the 

publications below are more thorough [35-40]. The following 

are some more details. 

1. Due to its attractive CD features that can effectively be 

handled with no approximation, the A-CCRTD will be 

analytically transformed into a stochastic problem for convex 

optimization. The matrix shows how many wind farms depend 

on their output. 

2) CD has numerous mathematical advantages. It’s CDF and the 

Inverse CDF may be analytically defined as a cost component of 

the CD can be predicted. As a consequence, by utilizing the 

Copula function, we may convert any linear constraints into 

stochastic linear constraints. The selection of scenarios still 

needs a significant load of computation, solution and A-CCRTD 

can be addressed quickly. 

This method makes the chance-complicated optimization issue 

for power stations with high wind penetration practically 

tractable in real-time applications. In addition, given that chance 

constraints are analytically transformed, sensitivity analysis is 

simple such as changing risk levels. 

3) A refined control method for the AGC system comprises a 

chance limited dispatch mechanism. In the suggested model, 

both the APRR and the power fluctuations in the transmission 

system induced WPFE in RTD stage were considered. 

In order to guarantee system reliability, enough control capacity 

of AGC units must be set aside in RTD phase to rectify real time 

power imbalance generated by wind power uncertainty. The 

remaining article is as follows structured. Section-II deals with 

both the Cauchy distribution and the WPFE model in the 

mathematical aspects. Section III contains the Cauchy 

distribution A-CCRTD model mathematical formula. 

Section IV deals with case studies and Section V presents the 

conclusion. 

II. WPFEMODELING WITH THE MULTIVARIATE 

CAUCHY DISTRIBUTION 

 If a "Multivariate Cauchy Distribution" with the location 

vector µ & the scaling matrix ∑ is applied to a p-dimensional 

Random vector X, then the PDF is [29]: 

 

𝑓𝑥 (𝑥; 𝜇, Ʃ) =  
𝛤 (

1+𝑝

2
)

𝛤 (
1

2
)𝜋

𝑝
2Ʃ

1
2[1+(𝑥−𝜇)𝑇Ʃ−1(𝑥−𝜇)]

1+𝑝
2

            (1) 

 

The x~ Cauchy, PDF of the one-dimensional CD when p = 1, is: 

 

𝑓𝑥(𝑥; 𝜇, 𝜎2) =  
1

𝜋
[

𝜎

(𝑥− 𝜇)2+𝜎2] , 𝑥𝜖𝑅                  (2) 
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The following are some key qualities that can help you overcome 

A-CCRTD: 

1) Internal property: 

∫ 𝑥. 𝑃𝐷𝐹(𝑥)𝑑𝑥 =
𝜎

2𝜋
ln (1 + (

𝑥−𝜇

𝜎
)

2

+ arctan (
𝑥−𝜇

𝜎
) + 𝑐 

                   (3) 

∫ 𝑥2. 𝑃𝐷𝐹(𝑥)𝑑𝑥 =
𝜎

𝜋
(𝑥 − 𝜇) +

(𝜇2−𝜎2)

𝜋
arctan (

𝑥−𝜇

𝜎
) +

𝜇𝜎

𝜋
ln (1 + (

𝑥−𝜇

𝜎
)

2

+ 𝑐                   

      (4) 

2) Stable property: 

The term "stable" [5] refers to the fact that the “linear 

transformation of x in (1)” may be represented “one-dimensional 

CD”. Consider the case when an is a p-dimensional vector, and 

we have 

𝑎𝑇~𝐶𝑎𝑢𝑐ℎ𝑦(𝑎𝑇𝜇, 𝑎𝑇Ʃ𝑎)        (5) 

CDF and inverse CDF analytical expressions 

 

𝐶𝐷𝐹(𝑥) =
1

𝜋
arctan (

𝑥−𝜇

𝜎
) +

1

2
      (6) 

𝐶𝐷𝐹−1(𝐹) = 𝜇 + 𝜎 tan [𝜋 (𝐹 −
1

2
)]      (7) 

4) “Fitting & sampling” 

The Multive package [30]'s msc Fit function is used for data 

adapting multivariate CD-parameters using R Statistical 

Computing Environment [31]. Whereas rmvc may be utilized in 

sampling a multivariate Cauchy dispensing function of R's 

Laplaces Demon Package [32], operators can employ a 

multivariate CD that fits a WPFE to any wind farms. 

 

III. MATHEMATICAL MODEL   FORMULATION    

OF A- CCRTD 

This section describes the A-CCRTD model formulation. In the 

nomenclature section, the declarations of the variables may be 

found. Since the results of the load prediction are sufficiently 

accurate using state-of-the-art prediction technologies [33], this 

research solely examines errors in the prediction of wind power. 

This model may be scaled to accommodate for uncertainties in 

demand for load. 

𝐹 = 𝑚𝑖𝑛 ∑ {𝑇
𝑡=1 ∑ 𝐶𝐹𝑖,𝑡(𝑃𝑖,𝑡

𝑠𝑁
𝑖=1 ) + ∑ 𝐶𝐹𝑗,𝑡(𝑃𝑗,𝑡

𝑎 ) +𝐽
𝑗=1

∑ 𝐸[𝐶𝑅𝑗,𝑡
+ (𝑤𝑡

~)] + ∑ 𝐸[𝐶𝑅𝑗,𝑡
− (𝑤𝑡

~)]}𝐽
𝑗=1

𝐽
𝑗=1            (8) 

The generating costs of the AGC & the non-AGC units, 

respectively, are CFit and CFjt. The upward as well as the 

downward directive or regulating costs (corrective control costs) 

of AGC units are represented by CRj and CRjt, respectively; 

these words may alternatively be thought of as penalty costs of 

the overestimation as well as underestimating of the wind power 

production. Below is a list of the detailed formulas. 

(1) Generation cost: The expenses generated by the AGC & 

non-AGC unit are shown by the quadratic power output 

functions 

𝐶𝐹𝑖,𝑡(𝑃𝑖,𝑡
𝑠 ) = 𝑎𝑖,𝑡(𝑃𝑖,𝑡

𝑠 )
2

+ 𝑏𝑖,𝑡𝑃𝑖,𝑡
𝑠 + 𝑐𝑖,𝑡                   (9) 

𝐶𝐹𝑗,𝑡(𝑃𝑗,𝑡
𝑎 ) = 𝑎𝑗,𝑡(𝑃𝑗,𝑡

𝑎 )
2

+ 𝑏𝑗,𝑡𝑃𝑗,𝑡
𝑎 + 𝑐𝑗,𝑡                 (10) 

2) Corrective control cost 

 The discrepancy between actual wind Power output wt. and 

planned output wt. causes corrective control expenses. 

The AGC units should be able to balance the power imbalance 

at any time using specific principles. In practice, participation 

factor are generally allocated to the AGC units in proportion to 

their capacity, based on control principles. As a result, the affine 

control approach is established. 

 

𝑝𝑗,𝑡
~𝑎 = 𝑝𝑗,𝑡

𝑎 − 𝛼𝑗 . (𝑤𝑡
~ − 𝑤𝑡), ∑ 𝛼𝑗 = 1(𝛼𝑗 ≥ 0)𝐽

𝑗=1   

        (11) 

 

The estimated corrective costs are proportionate to the AGC 

units expected positive and negative capacity deployed, i.e. 

{𝐸 = [𝐶𝑅𝑗,𝑡
+ (𝑤𝑡

~)] = 𝛾𝑗,𝑡
+ 𝛼𝑗 ∫ (𝑤𝑡 − 𝜃𝑡

~)𝜑𝑡(𝜃𝑡
~𝑤𝑡

0
)𝑑𝜃𝑡

~  

    (12) 

{𝐸 = [𝐶𝑅𝑗,𝑡
− (𝑤𝑡

~)] = 𝛾𝑗,𝑡
− 𝛼𝑗 ∫ (𝜃𝑡

~ − 𝑤𝑡)𝜑𝑡(𝜃𝑡
~𝑤𝑡

−

0
) 𝑑𝜃𝑡

~ 

                (13) 

where the PDF (probability density function) is in period t of the 

random variable. Assume that all wind farms have a probability 

density function output in the time period t. We finally get to 

Section II, utilizing the mathematical features of the CD and 

WPFE model. 

∑ 𝐸[𝐶𝑅𝑗,𝑡
+𝐽

𝑗=1 (𝑤𝑡
~)] + ∑ 𝐸[𝐶𝑅𝑗,𝑡

−𝐽
𝑗=1 (𝑤𝑡

~)] = ∑ [𝐴 + 𝐵. 𝑤𝑡 −𝐽
𝑗=1

𝐶√∑ 𝑤𝑡
~

2
. ln (1 + (

𝑤𝑡−𝜇𝑤𝑡
~

√∑ 𝑤𝑡
~ )

2

) + 𝐶. (𝑤𝑡 − 𝜇𝑤𝑡 
~)𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑡−𝜇𝑤𝑡 
~

√∑ 𝑤𝑡
~ ] 

       

     (14) 

Where A, B, and C are the constants of which Appendix A 

contains the formulae and k-dimensional vector of all 1 

elements. The goal function description is convex in Appendix 

B. Deterministic limitations of system and possibility 

restrictions are set forth below.  

 

∑ 𝑝𝑖,𝑡
𝑠𝑁

𝑖=1 + ∑ 𝑝𝑗,𝑡
𝑎𝐽

𝑗=1 + ∑ 𝑝𝑘,𝑡
𝑊𝐾

𝑘=1 = ∑ 𝑝𝑑,𝑡
𝑑𝐷

𝑑=1   

                             (15) 

P−j,t
a ≤ pj,t

a ≤ P−
−j,t
a , P−i,t

s ≤ pi,t
i ≤ P−

i,t
s , 0 ≤ pk,t

w ≤ pk,t
−w 

                             (16) 

Pr{αj. (wt − wt
~) + pj,t

a ≤ Pj,t
−a} ≥ 1 − δ Pr{P−j,t

a ≤ pj,t
a +

αj. (wt
~ − wt)} ≥ 1 −

δ                                                                                          (17)

Pr– RDj,t
s . ∆T ≤ pi,t

s − pi,t−1
s ≤ RUi,t

s . ∆T  

Pr{−𝑅𝐷𝑗,𝑡
𝑎 . ∆𝑇 ≤ 𝑝𝑗,𝑡

~𝑎 − 𝑝𝑗,𝑡−1
~𝑎 } ≥ 1 − 𝛽   

                   (18) 
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Pr{pj,t
~a − pj,t−1

~a − RUj,t
a . ∆T} ≥ 1 − β  

               (19) 

Pr {Rt
+ ≤ ∑ (Pj,t

−a − pj,t
~a)} ≥ 1 − ε

J
j=1    

                      (20) 

Pr {Rt
+ ≤ ∑ (pj,t

~a − P−j,t
−a )} ≥ 1 − ε

J
j=1    

                          (21) 

Pr{|∑ Gl,i
N
i=1 pi,t

s + ∑ Gl,j
J
j=1 pj,t

~a + ∑ Gl,k
K
k=1 pk,t

~w +

∑ Gl,d
D
d=1 pd,t

d | ≤ Ll,t} ≥ 1 − η                (22)  

              

The limit of the power balance is equated (13). Equation (14)'s 

limit on power production means that the AGC unit's, the 

projected electricity production of non-AGC units and wind 

farms cannot go above the limitations. Equation is the 

opportunity constraint that says that a certain degree of trust is 

provided for the real regulatory capability of AGC units. The 

limitation of the ratio for the non-AGC units is equation (16). 

Equation (17), which constitutes an opportunity constraint, 

limits the actual incremental output of the AGC over the next 

several times. The extra "Electricity Ramping Requirement" is 

to be included in the shipping process, because the imbalanced 

wind farm power competes in real-time for ramp capacity.β is 

the tolerable probability of a pre-specified violation. In order to 

ensure system security for specific eventualities, reserve 

restrictions (equations 18) are used. Equation (19) is a limited 

transmission capacity, showing that there is a lower probability 

of overflowing a transmission line. The unbalanced power 

supplied in real time to each AGC unit helps to activate power 

on lines overlooked in traditional CCED models. 

Form is compact, and there is a solution for the Chance 

Constraints. Equations (21) and (22) may be used to represent 

chance restrictions in A-CCRTD in the compact forms: 

Pr [(𝐴(𝑔))
𝑇

𝒖 + (𝐵(𝑔))
𝑇

𝒚~ ≤ 𝐷(𝑔)] ≥ 1 − 𝜁(𝑔)  

                         (23) 

Pr [(A(g))
T

𝐮 + (B(g))
T

𝐲~ ≥ D(g)] ≥ 1 − ζ(g)  

                     (24) 

According to the CD's mathematical characteristics, which are 

stated in Equations (20) and (21) in section II are transformed to 

Constraints that are deterministic (22) and (23): 

D(g) − (A(g))
T

𝐮 ≥ (B(g))
T

𝐮y~ +

√(B(g))T ∑ y~B(g)tan [π(1 − ζ(g) −
1

2
)]   

                      (25) 

D(g) − (A(g))
T

≤ (B(g))
T

𝐮y~ +

√(B(g))T ∑ y~B(g)tan [π(1 − ζ(g) −
1

2
)]                  (26) 

      

In A-CCRTD, any chance restrictions may be transformed in the 

same way. A-transformation CCRTD's of chance limitations. 

Chance constraint (15) is transformed into constraint using the 

WPFE model presented in section II (24), 

 

𝛼𝑗𝑤𝑡 + 𝑝𝑗,𝑡
𝑎 − 𝑃𝑗,𝑡

−𝑎 ≤ 𝛼𝑗 . 𝐶𝐷𝐹𝑤𝑡
~

−1(𝛿)     

                                  (27) 

𝛼𝑗 . 𝐶𝐷𝐹𝑤𝑡
~

−1(1 − 𝛿) ≤ 𝛼𝑗𝑤𝑡 + 𝑝𝑗,𝑡
𝑎 − 𝑃−𝑗,𝑡

−𝑎    

                               (28) 

Constraint (25) is converted from Chance Constraint (17):  

pj,t
a − pj,t−1

a + αj(wt − wt−1) − RUj,t
a . ∆T ≤ αj. CDFwt,t−1

~
−1 (β) 

                  (29) 

αj. CDFwt,t−1
~

−1 (1 − β) ≤ pj,t
a − pj,t−1

a + αj(wt − wt−1) +

RUj,t
a . ∆T                              (30) 

Constraint (26) is converted from chance constraint (18): 

wt + Rt
+ + ∑ (pj,t

a − pj,t
−a) ≤ CDFwt

~
−1 (ε)J

j=1    

                        (31) 

CDFwt
~

−1 (1 − ε) ≤ wt − Rt
− + ∑ (pj,t

a − p−j,t
aJ

j=1   

                     (32) 

And constraint (27) is transformed from chance constraint (19): 

CDFalpt
~w

−1 (1 − η) ≤ Ll[∑ Gl,i
N
i=1 pi,t

s + ∑ Gl,j
J
j=1 pj,t

a +

(∑ Gl,j
J
j=1 αj) ∑ pk,t

wK
k=1 + ∑ Gl,d

D
d=1 pd,t

d ] − Ll[∑ Gl,i
N
i=1 pi,t

s +

∑ Gl,j
J
j=1 pj,t

a + (∑ Gl,j
J
j=1 αj) ∑ pk,t

wK
k=1 + ∑ Gl,d

D
d=1 pd,t

d ] ≤

CDFalpt
~w

−1 (η)          (33) 

The A-CRTD model is finally converted analytically into a 

Convex Objective function, which is reported with 

Deterministic Linear Limits (9), (10) and (12). Note: Convex is 

the finished model and there are no vertices. In the process of 

transformation, approximation or iteration is used. Numerical 

experiments demonstrate the rapid calculation capacity of this 

model. 

IV. NUMERICAL TESTS 

Numerical experiments were carried out in this part to ensure 

that the suggested approach was effective. First, Current 

evidence of the accuracy of CD fitting in WPFE was taken from 

20 wind farms in Southwest China. A modified IEEE 24 bus 

system showed the benefits of the proposed paradigm. 

Meanwhile, in RTD, the consequences of numerous wind farms' 

interdependence were explored.  

The next item is the updated IEEE 24-bus system parameters. 

During load times in the valley and 15:3021:30, the loading 

profile of the system is depicted on the left hand side of Fig 1. 

Fig. 1. On the right side of Figure 1, the projected wind output 

profile is displayed and the power output follows the rule that 

wind production is higher at night. 
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FIGURE 1: Normal probability  

      

FIGURE 2: Empirical CDF 

    

 

   FIGURE 3: Cauchy distribution fitting on wind farm data 

There are four wind farms connected to buses #1, #2, #3 and #4, 

7, 14, 16 and 21. The The 4 wind farms have a capacity of 220, 

280, 90 and 190 MW. The AGC connection units are 

proportionate to their capacity to participate on AGC units and 

to buses 5-8, 23 and 31-33. Furthermore, in this simulation all 

confidence levels are set at 0.98. [36] contains setup and settings 

adjusted for IEEE 24-bus and settings modify for IEEE 118-bus. 

A. Comparison of precision fitting WPFE in various 

distributions.A Statistical analysis of 20 wind farms with over 

80,000 data in southwestern China has shown the excellent 

accuracy of the Cauchy distribution on the WPFE fitting. A. The 

electric power control centre provided all current and ultrashort 

forecast data used in this study. We normalised all expected and 

actual wind power in [1][26][29] and WPFE were then supplied 

with conditional distributions at various real values. The actual 

values range from 0.1 p.u. to 0.8 p.u.  

 

FIGURE 4: “PDF fitting results of different distributions using data 1” 

 

FIGURE 5: “PDF fitting results of different distributions using data 2” 
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We therefore choose two random data sets of about 7000 

pairings each. We found that the CD provides different 

distributions, particularly in respect of curtosis and tail conduct, 

in Figs. 2 and 3. The likelihood in the centre is considerably 

underestimated by the gaussian, beta and females, while in the 

head and dress area the probability is dramatically 

overestimated.  

TABLE I: “RMSEs of Different Distributions comparison ” 

Data 

Set 

RMSE (p.u) 

Cauchy: Gaussain: Beta: Weibull: 

Data 1. 0.3221 2.1144 2.2739 2.5273 

Data 2. 0.3220 0.6365 0.7021 0.8695 

In this paragraph, the proposed A-CCRTD was compared with 

the CCED models and the AGC refined control technique was 

not covered by APRR. The cost was a total of 12 dispatch times 

between 21:00 and 22:00 in all the situations. "Monte Carlo 

simulations (MCS)," utilising the economic and safety 

performance of A-CCRTD has been compared with other 

systems using 10,000 scenarios. 

 

FIGURE 6: a) “Total wind power output curve predicted for 21:00-22:00.(b) 

Total cost for CCED with APRR and CCED without APRR in two scenarios”. 

        

 
FIGURE 7: The unit's security level increasing  from   period 4 to period 5.  

 

FIGURE 8: The device's security level increases from time period 11 to 12. 

APRR'S IMPACT ON RAMPING LIMITATIONS: The normal 

ramp rates were evenly adjusted from 0,04 to 0,1 in this 

experiment for all AGC units. The security index for the 

increasing resources is provided for easy comparison: 

𝐼𝑟 =
𝑁𝑟

𝑁𝑀
                           (34) 

The average number of adequately resourced scenarios is N, 

whereas the total number of scenarios for the MCS is NM. A 

greater value of Ir thus means a higher degree of safety. Fig.5. 

the anticipated profile of the overall wind production will be 

between 21:00 and 22:00 (a). Fig. 5b shows that, for low unit 

ramping rates, considering the effect of APRR, the total 

expenses for every simulation will increase the timetable cost. In 

severe circumstances, uneconomical scheduling outcomes offer 

a tempting decision to avoid a shortage of ramping resources. 

Figure 7, providing findings for AGC units in two distinct 

instances respectively of the Monte Carlo Simulation:  

1) period 4 to period 5 (2) period 10 to period 11. Due to the 

depleted resources in which the ramping rate for AGC units is 

low, the safety level of ramping without APRR is not able to 

achieve the required levels in Fig. 6 and Fig.7, as shown by the 

wind energy fluctuation in the two situations Fig. 5. Figures 6 

and 7 also show that only if the system has a large ramping 

resource can the effect of APRR be ignored in the ED. 
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2) Limiting the transmission capabilities and effect of the 

affinity control approach 

We increased Line 11's transmission capacity from 155 MW to 

170MW in this simulation, in order to show the effect on the 

limits of transmission capacity of a revised control approach. 

The transmission capacity security index may be defined as     

𝐼𝑡 =
𝑁𝑡

𝑁𝑀
     (35) 

Nt is average number of the scenarios without the transmission 

congestions for the line #11 throughout all the 12 dispatching 

periods. It can be concluded from Fig.7 that, while using an 

affine control approach increases operating costs, it ensures 

adequate transmission capacity for the security. It is for the 

reason, if the AGC control method is not considered in advance, 

“the redistribution of real-time power mismatch may cause 

transmission line congestion”. To avoid network congestions, it 

is important to include AGC unit regulation technique in the 

scheduling stage. 

            

 
FIGURE 9: The cost is calculated as the average of 13 dispatching periods. 

 
FIGURE 10: The average security level across 13 periods is the security level. 

THE IMPACT OF MULTI-WIND FARM 

INTERDEPENDENCE: The aim of this experiment was to 

explore how the performance of the system affected the 

dependence of various wind farms. In comparison, we utilised 

two alternative scenarios: one with and one without taking the 

dependency of four wind farms into account: File I: the position 

of the vector and the scale of the matrix are consistent with 

previous parameters; case II: vector location and scale of matrix 

are incompatible. Field I: Field II: In contrast to Case I, the PDF 

for all wind farms is controlled exclusively by a marginal 

distribution, meaning that the random variables are the outputs 

of each wind farm. Each sample used an A-CCRTD 12-period. 

The distribution parameters in Case I used to demonstrate costs 

and risk impacts of dependency were used to generate 10000 

random wind turbine scenarios. Table II shows the potential 

danger reduced at the disadvantage of greater costs by taking 

into consideration ED dependency. This is because WPFE is 

enhanced by the combining of several wind farms in our 

simulation. As a result, reliance on wind farms should be taken 

into account in real time power supply. 

TABLE II: CORRELATION'S EFFECT ON THE ECONOMY AND 

OPERATIONAL RISK 

Case CaseI 

dependent 

Case II 

Independent 

Cost 50736 50387 

Risk level of the 

reserve constraints 

1.58% 2.39% 

Risk level of the unit 

ramping constraints 

0.82% 0.79% 

Risk level on the 

transmission line 

constraints 

0.74% 0.65% 

A-EFFECTIVENESS CCRTD'S: For IEEE-24-bus and IEEE-

118-bus systems, Table III illustrates the model size and the 

computation time of A-CCRTD. Note that because the reverse 

CDF on CD is analytical, it is possible to directly obtain the 

quantities of chance limits. Although A-CCRTD contains 1225 

variables and 6275 limitations for the IEEE 118-bus system, it 

can be solved within 7.23 seconds. This technique is thus suited 

for application in real time in big power networks with 

substantial wind energy penetration. 

TABLE III: THE ACC-RTD MODEL'S COMPUTATIONAL EFFICIENCY 

COMPARISION 

System 24 bus 118bus 

CPU time(s) 2.16511 7.2335 

Bus No 24 118 

Line No 38 181 

Unit and wind 

farm No 

35 78 

Variables No 626 1235 

Constraints No 2378 6285 

V. CONCLUSION 

This study offers a coordinated A-CCRTD method. There are 

three types of wind power stations, Non-AGC and AGC 

systems. There are two main factors to be considered. We differ 

with traditional CCED in several aspects of our approach. The 

A-CCRTD model based on  precise description and 
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mathematical features of the WPFE distribution, is equated to 

issue of convex optimization which is easily resolved without 

approximations. However, both the APRR and the voltage  

fluctuations of the transmission lines produced by the 

assignment in real time of retail power imbalances via AGC's 

affinity control methods. The suggested approach is better and 

more rational than the present CCED models, according to the 

numerical trials. Using Monte Carlo simulations the significance 

of reliance on multi-wind farms is further studied in real time 

constructs. The technique presented makes the RTD traceable 

even in real time applications of large power systems and 

significant wind energy penetration, via the use of generic 

optimizer solutions. Basically I apply 20 winds farms data on 

different distribution and you see that in numerical portion and 

results shows that error in Cauchy distribution is less from other 

distribution. 

 APPENDICES 

A. Constants in the section-Ⅲ 
𝑑2

𝑑𝑠2 [∑ (𝑘𝑖,𝑗 . 𝛼𝑗 ∫ (𝑣 − 𝑠)𝑝(𝑣)𝑑𝑣 + 𝑘2,𝑗. 𝛼𝑗
𝑠𝑚

𝑠

𝐽
𝑗=1 ∫ (𝑠 −

𝑠

0

𝑣)𝑝(𝑣)𝑑𝑣)] =
𝑑

𝑑𝑠
[∑ (𝑘2,𝑗 . 𝛼𝑗 ∫ 𝑝(𝑣)𝑑𝑣 −

𝑠

0

𝐽
𝑗=1

 𝑘1,𝑗 . 𝛼𝑗 ∫ 𝑝(𝑣)𝑑𝑣)] = ∑ [𝛼𝑗(𝑘1,𝑗 + 𝑘2,𝑗)𝑝(𝑣)]𝐽
𝑗=1

𝑠𝑚

𝑠
  

          (36) 

B. The objective function's convexity, where k1 & k2 are cost 

coefficients for underestimation & overestimation, v is actual 

power production, and s is planned decision variable. 
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