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Abstract- Smart urban mobility solutions are being proposed to enhance the urban road network’s efficiency. From a smart 

urban mobility perspective, real-world vehicular traffic flow parameters (such as vehicular count, flow, classification, speed, 

road capacity, time/distance headway, temporal/spatial densities, heatmaps, and trajectories) are imperative. In this context, a 

plethora of solutions have been proposed for traffic flow characterization in existing literature. These solutions can be 

categorized as either intrusive sensors, non-intrusive sensors or Internet-of-Video-Things based solutions. However, these 

solutions have serious limitations. In this context, compute vision based edge computing solutions have emerged as an optimum 

solution for traffic flow characterization. The objective of this work is to propose mathematical solutions for further 

enhancement of the already proposed edge computing solution’s performance. A comprehensive literature survey of proposed 

edge computing solutions has been undertaken. Edge computing solutions are seriously constrained because of the compute 

resources of single board computers. At most only two traffic flow parameters (either count and classification or count and 

speed) can be measured. To overcome this limitation, mathematical traffic flow equations for eight additional traffic flow 

parameters have been reported. These additional eight parameters calculated mathematically range from traffic flow, density, 

sensitivity, equilibrium, critical density, time\distance headway and driver presumptions. Using these mathematical equations 

instead of compute heavy image processing can enhance already proposed edge computing solutions by 400%.  

 

Index Terms-- Intelligent transportation system, Edge Computing, traffic flow characterization, Raspberry Pi, IoT. 

 

I. INTRODUCTION 

With increasing urbanization, various challenges have emerged 

in developing future smart cities. One of the most pressing among 

these challenges is urban mobility. Associated problems with 

urban mobility range from congestion, accidents, productivity 

losses and ambient air pollution. With 25% share in world energy 

consumption, the transportation sector is responsible for 29% of 

overall greenhouse gas (GHG) emissions [1]. Furthermore, the 

transport sector is a major contributor of carbon dioxide (CO2), 

nitric oxides, carbon monoxide (CO), and particulate matter (PM) 

in urban environments. This ambient pollution causes serious 

health issues such as cardiovascular, respiratory, pulmonary and 

cancer [1, 2]. Traffic congestion is the primary source of road 

network’s inefficiency leading to time and labor productivity 

losses. According to a Texas A&M Transportation Institute 

report, an average American driver spent seven days in traffic 

congestion costing each driver on average $1000 in 2017 alone 

[3]. 

 

Intelligent transportation system (ITS) based solutions are 

gaining traction for providing smart urban mobility. ITS is 

integration of different technologies (such as compute boards, 

sensors, communication, cloud platforms, algorithms, and big 

data analytics) for better road network design, planning and 

management. One of the fundamental building blocks for 

providing ITS based solutions are real-world vehicular traffic 

flow parameters. These traffic flow parameters range from 

vehicle count, flow, speed, classification, density, sensitivity, 

time\distance headway, spatial\temporal densities, road capacity, 

and trajectories. Using these parameters, road network 

inefficiencies such as road bottlenecks can be identified. 

Furthermore, these parameters can be used for calibration and 

validation of traffic simulation software (such as VISSIM, 

Corsim and Paramics) and mathematical traffic flow models for 

better planning, designing and management of road networks [3]. 

 

In this context, varying solutions have been proposed for traffic 

flow characterization in existing literature. These solutions can 

be categorized as either intrusive sensors, non-intrusive sensors 

or Internet-of-Video-Things (IoVT) based solutions. However all 

of these have their limitations as detailed in section 2. With 

advancement in computing technology, edge computing 

solutions have emerged as the most optimum solution for traffic 

flow characterization. This research was undertaken with the 

following objectives: 

● Limitation of intrusive\non-intrusive sensors and IoVT 

based solutions. 
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● Identifying the optimum solution for roadside traffic 

flow characterization. 

● Proposing mathematical traffic flow characterization 

equations for optimizing edge computing-based 

solutions. 

Edge computing solution’s primary limitation is their compute 

resource constraints. Thus limiting them to measure at most only 

two traffic flow parameters (either count\classification or 

count\speed) as detailed in section 3. In this work we have 

reported mathematical traffic flow characterization equations for 

calculating eight traffic flow parameters. Compute resource 

requirements for mathematical equations are comparatively far 

less than image processing. Incorporating these mathematical 

equations can enhance the currently proposed edge computing 

solution’s performance by 400%.   

 

The rest of the work has been organized such that section II 

details the limitation of intrusive sensors, non-intrusive sensors 

and IoVT based solutions. In section 3, all edge computing 

solutions for traffic flow characterization in existing literature 

have been reported and analyzed. In section 4, mathematical 

equation-based solutions have been proposed for mitigating 

compute resource constraints of edge computing solutions. 

Lastly, conclusion and future work has been presented in section 

5. 

 

II.  LIMITATIONS OF EXISTING PROPOSED SOLUTION 

In existing literature, various solutions have been proposed for 

roadside traffic flow characterization. The second generation 

sensing technologies can be broadly categorized as either 

intrusive or non-intrusive sensors. Though marked improvement 

over manual counting, these sensors have serious limitations as 

tabulated in Table 1. Biggest limitation is their inability to 

characterize traffic under congested and heterogeneous traffic 

conditions. Moreover, these sensors can only measure vehicle 

count, speed and classification. as can be seen in Table 1. 

To overcome inherent limitations of intrusive and non-

intrusive sensors, compute vision based solutions (both IoVT and 

edge computing solutions) are emerging as the most optimum 

solution for traffic flow characterization. In compute vision based 

solutions, a single camera can act as a sensor by capturing 

roadside traffic flow video. Using image processing algorithms, 

a full range of traffic flow parameters (such as vehicle count, 

flow, speed, classification, road capacity, time/distance headway, 

temporal/spatial densities, heatmaps and trajectories) can be 

measured. Distinctive advantage of compute vision based 

solution is its capability to characterize traffic flow under all 

traffic conditions (such as congested, uncongested, homogeneous 

and heterogeneous). Unlike intrusive and non-intrusive sensors, 

this also includes the ability to count pedestrians, bicycles, three-

wheelers, animal/human drive carts. Furthermore, performance 

of compute vision based solutions are less susceptible to 

meteorological conditions.  

For better clarity, this section has been divided into four 

subsections: (A) intrusive sensors, (B) non-intrusive sensors, (C) 

IoVT based solutions, and (4) compute vision based edge 

computing solutions. 

 

A.  INTRUSIVE SENSORS 

Intrusive sensors as the name suggests are mostly embedded in 

road surfaces. Though low cost, intrusive sensors are temporary 

solutions and cause traffic disturbances during installation and 

maintenance [4]. Intrusive sensors though highly accurate, can 

only measure vehicle count. To measure vehicle speed or 

classification, complex configuration of multiple intrusive 

sensors is required thus affecting their accuracy [4-6]. Major 

disadvantages of intrusive sensors are their inability to 

characterize traffic under congested and heterogeneous traffic 

conditions. Furthermore, these types of sensors are unable to 

detect pedestrians, animal/human driven carts, bicycles, and 

three-wheelers. 

B.  NON-INTRUSIVE SENSORS 

Non-intrusive sensors are installed on or above road surfaces for 

traffic flow characterization. Though expensive as compared to 

intrusive sensors, they are easy to install, operate and maintain. 

Non-intrusive sensors are less damaging to the road surface as 

well as less detrimental to traffic flow during installation and 

maintenance. Non-intrusive sensors can provide more traffic flow 

parameters as compared to intrusive sensors. However, these are 

also incapable of characterizing traffic flow under congested and 

heterogeneous traffic conditions. Furthermore, accuracy of these 

sensors is highly sensitive to meteorological conditions such as 

rain, fog, wind, temperature, sound, and lightning conditions as 

tabulated in Table 1 [2, 4]. 

 
TABLE I  

LIMITATIONS OF INTRUSIVE AND NON-INTRUSIVE SENSORS [4-6] 

 

Sensor Type Parameters Disadvantages 

Intrusive Sensors 

Inductive Loop Count Traffic disturbance during 
installation and maintenance. 

Inability to detect non-metallic 

objects. 

Pneumatic Tube Count, 

Classification 

High energy consumption, 

Susceptible to be torn under heavy 

traffic. Inability to operate under 
congested traffic. 

Piezoelectric 
sensors  

Count  
Speed 

Affected by road surface 
temperature 

For heterogeneous traffic multiple 

sensors are required. 
Inability to operate under congested 

traffic. 

Magnetic sensors Count, 
Classification 

and Speed 

Inability to detect non-metallic 
objects such as animal\human driven 

cart and pedestrians, Proximity to 

vehicles is required, Complex 
configuration of multiple sensors is 

required for classification and speed 

estimation. 

Non-Intrusive Sensor 

 

Accelerometers Count, Speed Sensitive to environmental 

vibrations, 

Incapable to detect stationary objects. 

Acoustic sensors Count, 

Classification 

Sensitive to environmental sounds. 
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Incapable to detect silent objects such 

as pedestrians, bicycles and 

animal/human driven carts.  

Infrared sensors Count, Speed, 

Classification 

Reactive to sunlight, Susceptible to 

meteorological conditions such as 

fog, dirt, and wind. 

Ultrasonic  Count, Speed Performance affected by temperature 

and air turbulence. 

Microwave 
Radar 

Count, Speed, 
Classification 

Poor performance under congested 
traffic conditions 

Vulnerable to electromagnetic 

interferences. 

Bluetooth 

Beacons 

Count, 

Classification 

Poor performance in congestion 

when transmitter and receiver are not 
in line of sight. 

Wi-Fi Count, 

Classification 

Static or slow-moving vehicles 

affects the performance of Wi-Fi due 
to weak signal strength received by 

receiver 

   

 

C.  IoVT SOLUTIONS 

IoVT solutions are where roadside video is streamed wirelessly 

to a server for image processing [7, 8]. IoVT solutions are marked 

improvement over both intrusive and non-intrusive sensors. This 

improvement is both in terms of measured traffic flow parameters 

and ability to work under all traffic conditions. However, the 

biggest disadvantage of IoVT solutions is roadside video 

streaming’s internet data bandwidth requirement. 

Video streaming is uninterrupted transmission of video in the 

form of data packets over the internet (UDP/IP for faster 

transmission of data). Beside reliable transmission, energy-

efficient real-time video encoding/decoding is an added 

requirement for such systems. For example, a 1920x1080 @ 30 

frame per second (fps) video in raw form will require 1.49 Gbps 

internet data bandwidth as opposed to 10 Mbps if the same video 

is encoded using H.264 encoder [9]. For higher traffic flow 

parameter’s measurement accuracy, higher video resolution and 

fps are imperative [10]. This can further increase video 

streaming’s internet data bandwidth requirements. Roadside 

video streaming’s internet data bandwidth requirements and costs 

per hour for different video formats are shown in Fig 1. The cost 

per hour for video streaming’s internet data bandwidth 

requirements are calculated based on the average internet 

package (50 GB/ $15) available in Pakistan.  

In addition to video streaming internet data bandwidth 

requirement, current consumption of the IoVT sensor node for 

video streaming has to be considered too. For example, Yuichiro 

et al. reported that as compared to software H.264 encoding, 

hardware H.264 encoders require 58 times less energy to encode 

a video of same resolution and fps [9]. In this context, Raspberry 

Pi (RPi) has emerged as the optimum single board computer 

(SBC) from a cost (both monetary and power consumption) 

efficiency perspective. RPi has built-in hardware H.264 encoder 

[9, 11]. 

 

 

FIGURE 1. Data transmission bandwidth requirement for video streaming at 

different resolutions and fps. 

 

D.  EDGE COMPUTING SOLUTIONS 

In light of limitations of above reported solutions (intrusive and 

non-intrusive sensors, IoVT, edge computing solutions have 

emerged as the most optimum solution. Salient point of such 

solutions are: 

(i) Unlike intrusive and non-intrusive sensors, these 

solutions have the capability to characterize traffic 

under all traffic conditions (such as congested, 

uncongested, homogeneous and heterogeneous).  

(ii) Unlike intrusive and non-intrusive sensors, these 

solutions have the capability to detect all types of 

vehicles (such as bicycle, bikes, animal/human driven 

carts) and pedestrians. 

(iii) Unlike non-intrusive sensors, meteorological conditions 

(such as rain, fog, sunlight, temperature, noise, wind, 

electromagnetic interference) impact on compute 

vision-based solution’s accuracy and performance is 

negligible.  

(iv) Unlike IoVT solutions, edge computing solutions don’t 

require high video streaming internet data bandwidth. 

With edge computing solutions, only 572 bytes are 

required to transmit 1 minute of roadside traffic flow 

parameters as opposed to 1 MB of video streaming [12]. 

 

However, performance of edge computing solutions is limited 

under the constraint of SBC’s compute resources. This is because 

of the amount of computation resources required for real-time 

image processing. In edge computing, an SBC is employed to 

process roadside traffic video in real-time. However with 

technological advancement in SBCs, this limitation can be 

overcome as can be seen in Table 2. In [13], a comparative 

analysis was conducted using four different SBCs such as 

Raspberry (RPi) B+, TE6210 CITRIC platform, PAC Duo and 

S5PV210 Arm development kit. With respect to computation 

resources and cost, it was concluded that RPi performed better. 

In [10], four SBCs (RPi B+, Beagleboard Xm, RPi 2 and Odroid 

XU4) were compared from traffic flow characterization 

perspective. It was reported that with 98% traffic characterization 

accuracy, Odroid XU4 performance was the best. This was 
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attributed to Odroid XU4’s 2GHz quad-core ARM Cortex-A53f 

processor and 2GB RAM. However, with advanced Raspberry 

(RPi) 4 specifications as can be seen in Table 2, RPi has become 

a better choice. Accuracy rate of edge computing solutions 

employing RPi has improved over the years as can be seen in 

Table 3. 

 

A.  SINGLE BOARD COMPUTER (SBC) 

Major limitation of edge computing solutions for traffic flow 

characterization is computation resource constraints of SBCs. 

Compute vision algorithms are compute heavy and as such needs 

high processing capability. However, with technological 

advancement in SBCs, it is hoped that in near future this 

constraint will be overcome. As can be seen in Table 3, RPi is 

fast emerging as a low-cost optimum SBC for edge computing 

solutions for traffic flow characterization.  

RPi is a small credit card sized SBC with the ability to 

intercommunicate with other peripheral devices. Furthermore 

with inbuilt hardware H.264 encoder/decoder, RPi is the lowest 

cost solution available for IoVT based traffic flow 

characterization. RPi has a built-in 802.11n wireless module and 

specialized CSI port for integrating cameras. Continuous 

technological advancements are being made to make it even more 

compute optimum over the years as can be seen in Table 2. As 

such, RPi has become the most optimum SBC for edge 

computing solution in existing literature as can be seen in Table 

3. 

 
TABLE II  

TECHNICAL SPECIFICATIONS OF DIFFERENT MODELS OF 

RASPBERRY PI 

 

Specs RPi 1 B+ RPi 2 B RPi 3 B+ RPi 4 B 

Year 2014 2015 2018 2020 

SoC Broadcom 

BCM2835 

Broadcom 

BCM2836 

Broadcom 

BCM2837B0 

Broadcom 

BCM2711 

CPU ARM11 

(32bit) 

Cortex-

A7(32bit) 

Cortex-

A53(64bit) 

Cortex-A72  

GPU Video Core 
IV 

Video Core 
IV 

Video Core IV Video Core 
VI 

Clock 

Cycle 

700MHz 900MHz 1.4 GHz 1.5GHz 

Cores Single-core Quad-core Quad-core Quad-core 

RAM 512 MB 1 GB 1GB 8GB 

Power 5V 5V 2.5A/5V 2.5A/5V 

Storage MicroSD 

card 

MicroSD 

card 

MicroSD card MicroSD 

card 

     

Further computation efficiency while employing RPi can be 

achieved by using multiprocessing techniques. For example in 

[14], the image processing algorithm was divided into four steps. 

These were then processed stepwise using four cores of an RPi 2. 

Effects of video’s resolution and fps on RPi’s compute resources 

were studied in [14, 15]. 

B.  SOFTWARE 

For compute resource optimization of an SBC, the choice of 

programming language and image processing algorithms 

employed are imperative. In this context, OpenCV (Open-Source 

Computer Vision Library) is the most employed image 

processing library as can be seen in Table 3. OpenCV consists of 

over 2500 optimized algorithms for image processing such as 

face detection, tracking movements, video capturing, object’s 3D 

models extraction and producing 3D point clouds from stereo 

cameras [15].  

OpenCV runs much faster than similar programs written in 

MATLAB, with the added capability of further computational 

optimization [16]. With OpenCV, it is possible to analyze 30 fps 

as compared to MATLAB which can process only 3-4 fps. 

Further computational optimization can be achieved through the 

choice of programming language. C/C++ is recommended for 

edge computing solutions as OpenCV is written in it. This choice 

can be further collaborated from proposed solutions in existing 

literature. Nearly all edge computing solutions have employed 

OpenCV/C++ as can be observed in Table 3.     

    In existing literature, nearly all edge computing solutions 

proposed have employed RPi for traffic flow characterization as 

can be seen in Table 3. Advancement in compute vision 

algorithms is another area where innovation is being proposed for 

further improvement as can be seen in Table 3. 

III.  PROPOSED EDGE COMPUTING SOLUTIONS 

SURVEY 

In light of discussion in section 2, compute vision-based edge 

computing solutions have emerged as the most optimum solution 

for traffic flow characterization. However, under the constraint of 

compute resources of SBCs, these solutions can provide only 

either vehicle count, count\classification or count\speed as can be 

observed in Table 3.  

A.  COUNT 

A solution to measure traffic density was proposed in [16]. In the 

proposed solution, Pi camera was integrated with RPi through 

USB for capturing roadside traffic video. The traffic video is 

analyzed and in each frame the background is subtracted resulting 

in black and white pixels. The black pixels show the empty space 

on the road, while white pixels represent vehicles or pedestrians. 

The percentage of black and white pixels of all the frames were 

calculated to estimate traffic density and congestion on the road. 

Final traffic density report was displayed to travelers on public 

screens placed on roadsides.  

Bhusari et al. [17] proposed a smart traffic control system using 

RPi 2, Pi camera and image processing. An AVR microcontroller 

was integrated with RPi for controlling LED traffic signals for 

traffic flow management. Traffic flow was analyzed using image 

processing techniques i.e., morphological operation and blob 

analysis. Vehicles were counted and compared with a user 

defined road density threshold. If road density was above user 

defined threshold, resulting traffic jam was cleared through 

traffic signals by giving priority to the roadside with traffic jam. 

The proposed solution had the added capability to detect 

ambulances and give right of way to such vehicles.  

Mallikarjun et al. [18] designed a solution to detect, track and 

count vehicles in real time using RPi 3 with OpenCV installed. 
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Proposed solution’s accuracy was reported at 96% from side and 

top view, 92.8% from front and rear view and 93% from multi 

view. Color features of vehicles were extracted to separate 

vehicles from the background. Vehicle’s contours were detected 

in the image through conversion from RGB to HSV, due to its 

wide color space. The detected contours were then tracked 

through their calculated centroid points using Kalman filter. It 

was reported that on average RPi took 81.5ms to process one 

single frame [18].  

In [19], Floating Car Data (FCD) was combined with image 

processing algorithms for vehicle counting. FCD was collected 

through detection of cellular phones in the vicinity through 

installed network towers. The vehicle count data through FCD, 

and image processing were compared individually and then with 

each other at a remote server. Accuracy of the proposed solution 

was reported at 93%.  

 
TABLE III  

PROPOSED RPI BASED EDGE COMPUTING SOLUTION FOR 

VEHICULAR FLOW CHARACTERIZATION SOLUTIONS 

 

RPi 1 B+ 

 

RPi 2 B 

 

RPi 3 B+ 

 

RPi 4 B 

 

Ref 
 

Hardware/ 

Software  

Type/ 

Reported 

Accuracy 

Parameters Imaging Techniques [16] 

RPi 1, 

OpenCV/

Python 
Webcam 

30 fps 

Real time Count 1. Background 

subtraction 

2. Calculate black and 
white pixels count 

3. Calculate 

percentage of free 
space on the road 

[18] 

RPi 3  

OpenCV/ 
C++ 

Pi Camera 

720x640 
30 fps 

1. Real 

time 
2. Accuracy 

from Multi 

view, Side-
top view 

and front-

rear view 
was 93%, 

96% and 

92% 
respectively

.  

Count 1. RGB to HSV 

2. Contour detection 
based on 8-

connectivity, chain 

code method 
3. Kalman filter 

[19] 

RPi 
OpenCV 

10 fps 

Real time 
93% 

Accuracy 

Count 1. Floating car data 
(FCD)  

2. image processing 

[10] 

 RPi 2B+ 
Pi camera 

320x240 

pixels 
30 fps 

Real time 
70% 

Accuracy 

Count 1. RGB to Gray 
conversion 

2. Gaussian Blur and 

Thresholding 
3. Blob detection 

4. Cross correlation 

[17] 

 RPi 2 
OpenCV/

C++ 

Pi Camera 

Real time Count  
 

1. Image Acquisition 
and Processing 

2. Morphological 

Processing 
3. Blob Analysis 

[20] 

RPi 3 B  
MATLAB 

Webcam 

Real time Count 
 

1. Foreground 
detection  

2. Gaussian Mixture 

models 
3. Median filter to 

remove noise 

2. Blob analysis  

[11] 

RPi 3 B 

OpenCV/

C++ 

Pi Camera 

Real time 

86.9% 

Accuracy 

Count 

 
1.Background 

Subtraction 

2.Contour Detection 

3.Convex Hall and 
tacking 

[7] 

 RPi 3 B+  

Python / 
Matlab 

Pi Camera 

 

Streaming 

Accuracy 
for 

medium, 

heavy and 
nighttime at 

91.08%, 

97.47% and 
88.16% 

respectively 

 Count 

Classification  

1. Color image to 

grayscale  
2. Histogram 

equalization 

3. Cropping  
4. Morphological 

operations 

[21] 

RPi 3 B 
OpenCV/

Python 

Webcam 

1024x768 

@ 

30fps  
 

Real time 
Stereo 

Average 

accuracy 

under 

different 

condition 
90% 

Count 
Classification 

1. Haar-like features 
for real time 

segmentation 

2. Random Sample 

Consensus Algorithm 

(RANSAC)  

3. Histogram of 
Oriented Gradient  

4. Scale Invariant 

Feature transform  
5. Normalized-Sum of 

Squared differences 
(NSSD) 

[14] 

RPi 2  

OpenCV/
C++ 

IP Camera 

640x360 
@ 15 fps 

Real time 

 
Write 

accuracy 

98% 

Count 

Classification 

1. Background 

subtraction (BGS) 
based on Gaussian 

mixture model (GMM) 

for Shadow removal  
2. Morphological 

operations 

3. Canny edge detector 
4. Kalman filters  

5. Hungarian 

algorithm for 
assignment 

[12] 

RPi 3 

OpenCV/C
++ 

Smartcam 

Samsung 
model 

SNH-

E6440BN 

Real time 

 
Accuracy

=83% 

Count, 

Classification 

1. Support Vector 

Machine (SVM),  
2. Kalman filter 

3. Sensor Observation 

Service 
4. K-Nearest Neigbors 

(KNN) and Gaussian 

Mixture Model 
(MOG2) for 

background 

subtraction  
5. Dilation and erosion 

for foreground 

extraction and tracking 

[8] 

RPi 

OpenCV/

Python 
Pi Camera 

480x360 

@ 40 fps 
 

Streaming 

 

Vehicle 
classificatio

n accuracy 

of SVM and 
KNN was 

reported at 

95.8 % 
Motorcycle 

classificatio

n accuracy 
of SVM 

and KNN 

reported at 
82.2% and 

57.2% 

Count, 

Classification 

1. Support vector 

machine (SVM) 

 
2. K-Nearest Neighbor 

(KNN) 

[22]  
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respectively

. 

RPi  

OpenCV/
C++  

Web 

camera 
@640x48

0  

Real time Count, 

Classification 

1. Object detection,  

2. Background 
subtraction 

3. Kalman filter  

4. Nearest neighbor 
algorithm 

[23]   

RPi model 
B 

OpenCV/

Python  
Pi camera 

Real time  Count, 
Classification 

1. Feature Extraction 
and Matching 

2. Remove Unmatched 

feature 
3. Scale Invariant 

Feature transform 

(SIFT), 
4. RANSAC 

algorithms 

[15] 

RPi 2 

OpenCV/

Python  

@ 320p, 
540p, 

720p 

Real time 

 

Count,  

Speed 

 

1. Color conversion,  

2. Motion detection  

3. Get coordinates,  

4. Speed calculation 

[24] 

RPi 3 B+ 
OpenCV/

C++  
Pi camera 

Real time 
Vehicle 

count and 
speed 

accuracy 

was 
reported at 

100% and 

80% 
respectively

. 

Count,  
Speed 

1. Background 
Subtraction 

2. Thresholding 
3. Morphological 

processes  

4. Contour detection & 
object tracking 

5. Speed calculation 

[25] 

     

 

B.  COUNT AND CLASSIFICATION 

In [7], a solution was proposed for traffic counting and 

classification under different lighting conditions (day and night). 

The solution had the capability to classify vehicles either as small 

or large vehicles. First unnecessary portions in a frame were 

cropped, detecting bright and dark vehicles with maxima\minima 

transform and performing morphological operation to separate 

connected vehicles. Accuracy was reported under three types of 

traffic conditions with 91.08% in medium traffic, 97.47% in 

heavy traffic and 88.16% at nighttime traffic.  

In [21], a solution was proposed for traffic counting and 

classification by employing two RPis with Pi cameras. The two 

cameras extracted Haar like features and made a bounding box 

around the detected vehicle. If the same detected bounding box is 

found in both systems, the two are compared to get matching 

features. Counting and classification was done by calculating 

width and height of the bounding boxes.  

Gregor et al. proposed a solution for traffic counting and 

classification using RPi 2 [14]. To overcome computation 

resource constraints of RPi 2, the image processing algorithm was 

divided into four steps. These were inturn run parallely on RPi’s 

CPU four cores. Four steps of the image processing algorithm 

were (1) image capturing, (2) Background Subtraction, (3) 

Detection and Tracking and, (4) Counting and Classification. For 

further compute resource optimization, the region of interest 

(ROI) was defined in each video frame. Regions outside ROI 

were discarded to help reduce computation needs. Experiments 

were conducted on videos of different resolutions and fps to find 

optimum resolution and fps from an accuracy perspective. It was 

concluded that the video with 640x360 resolution at 15 fps was 

the optimum choice from computation needs and accuracy 

perspective. Classification of vehicles was performed based on 

the bounding box size of detected vehicles.  

Felipe Torres et al. proposed traffic counting and classification 

solution using RPi with an integrated Smartcam (SNH-E6440BN 

Samsung) [12]. Using a three parallel lines approach, the 

proposed solution has the capability to analyze bi-directional 

traffic flow. Measurement-based features (MBF) and intensity 

pyramid-based histogram-oriented gradients (IPHOG) were 

extracted from blobs. These blobs were in turn used to classify 

vehicles using support vector machine (SVM). Employing 5 

minutes roadside traffic videos, an accuracy of 83% was reported 

under different weather conditions such as sunny, rainy, sunset 

and nighttime.  

In [8], KNN and SVM algorithms were employed using 

viewpoint feature histogram (VFH) descriptors to count and 

classify vehicles as either cars or motorcycles. Image processing 

algorithm was a five-step process ranging from filtering, 

segmentation, tracking, feature extraction and 

Classification/count. Counting was measured after successful 

classification of a vehicle as either a car or motorcycle. For 

classification, two machine learning models SVM and KNN were 

compared and analyzed. An accuracy of 95.8% was reported for 

both models when classifying vehicles as a car.  However for 

motorcycles, SVM with reported accuracy of 82.2% performed 

better than KNN with reported accuracy of 57.2% under high 

traffic conditions.  

Suryatali et al. proposed a traffic counting and classification 

solution for toll collection [22]. The proposed solution employed 

RPi, Pi Camera and OpenCV libraries. Vehicles were counted 

and classified as either light or heavy vehicles in order to charge 

toll accordingly. Khaana et al. proposed an RPi based solution for 

traffic counting and classification [23]. The focus was on 

resolving resolution and image blurring issues. In the proposed 

solution, scale invariant feature transform (SIFT) and random 

sample consensus algorithm (RANSAC) were employed for 

vehicles counting and classification. 

Balakrishna et al. proposed a solution for vehicle counting and 

classification. These traffic flow parameters were transmitted to 

a free and open-source cloud platform ‘ThingSpeak’ [20]. The 

proposed solution integrated an algorithm developed in the 

MATLAB tool called Simulink. For vehicle counting, image 

processing techniques (foreground detection, post-processing, 

and blob analysis) were performed on each frame.  

Ali et al. proposed a real time solution for traffic flow monitoring 

such as vehicle count, traffic flow, density, and time headway 

[11]. Furthermore, associated roadside vehicle emissions (such as 

carbon dioxide, carbon monoxide and particulate matter) were 

also measured. Traffic flow monitoring was achieved through 

image processing techniques (such as Background subtraction, 

Contour detection, convex hull, and Tracking) deployed on RPi 

3B with an accuracy of 86.9%. Measured and calculated 

parameters were transmitted to a cloud platform ‘ThingSpeak’ for 

storage, analysis, and visualization. Relationships between traffic 
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flow parameters and roadside vehicular emissions were 

developed. 

C.  COUNT AND SPEED 

Iszaidy et al. proposed a solution for traffic counting and speed 

estimation using RPi, Pi camera, OpenCV and Python [15]. 

Vehicles were detected, tracked, and assigned coordinates in each 

frame. Vehicle speed was estimated through coordinates of the 

detected vehicle in current and previous frames. To analyze 

computation resources, traffic videos of three different sizes 

320p, 540p and 720p were captured. From the results, it was 

reported that RPi’s CPU usage was almost the same for all three 

video resolutions. However, in the case of 720p video, memory 

requirement was higher than the other two.  

In [24], an RPi with Pi camera was employed for vehicle 

counting and speed estimation. The video frames were processed 

for background subtraction through OpenCV library to isolate 

moving vehicles in frames. Morphological processes were carried 

out on the frames to enhance the detected objects and then the 

objects were tracked through contour detection. Individual 

vehicle’s speed was estimated when the vehicle entered and 

exited from the calibrated region.  A flag was set to monitor the 

distance covered by the vehicle in pixels and the number of 

frames it traveled from enter to exit lines. Accuracy for vehicle 

counting and speed estimation was reported at 100% and 80% 

respectively.   

In [25], a solution for vehicle counting and speed estimation 

was proposed using RPi and Pi camera. Speed and orientation 

were estimated using the Gunnar Farneback method through 

calculation of optical flow. An Op matrix (16x16) was spread 

evenly throughout the image for two purposes: first to calculate 

optical flow between frames and second to reduce computational 

complexity. Measured traffic count and speed were transmitted 

to a local server using RPi’s Wi-Fi module. 

IV.  DISCUSSION 

Edge computing-based solutions for traffic characterization are 

seriously constrained under compute resources of SBCs. 

However, performance of these solutions can be markedly 

enhanced through employing mathematical traffic flow 

characterization equations. Mathematical traffic flow 

characterization has a lower computational cost as compared to 

compute visions algorithms-based traffic flow characterization. 

Ali et al. mathematically estimated traffic density, flow, and time 

headway from traffic count [11]. Distance headway, sensitivity, 

critical density, and driver presumptions can be estimated from 

traffic count and speed.  Traffic flow is the number of vehicles 

passing over a unit length of road. The units of ‘Traffic flow” are 

vehicles per unit time. Traffic flow ϒ can be calculated using (1) 

[26]. 

 

  ϒ =
𝑁

𝑡
               (1) 

Where N is the number of vehicles and t is the unit time. Time 

headway τ is required for velocity alignment between vehicles. 

This includes driver perception and reaction time. Perception 

time is required when a driver notices stimuli. While reaction 

time is required when vehicles align velocity between the forward 

and preceding vehicles. Time headway is the reciprocal of traffic 

flow and calculated using (2) [27], 

 

𝜏 =
1

ϒ
      (2) 

 

For a longer time headway (vehicles taking more time to align), 

the traffic flow is slower and thus congested. Conversely, when 

traffic flow is high then the time headway is shorter. Driver 

behavior also affects the traffic flow. For a shorter time headway, 

driver reaction is quick. Vehicle alignment quickly occurs in a 

shorter duration. Thus the driver response is aggressive. 

Conversely, a non-aggressive driver’s reaction is slower thus 

taking longer time to align. Thus reducing the overall traffic flow 

[33]. For an equilibrium driver reaction, alignment is based on 

density, and flow is at equilibrium.  

Traffic density δ is the number of vehicles over a length of road. 

Traffic density from the vehicle count can be calculated using (3) 

[28, 29] 

𝛿 =  
𝑁

𝐿
 .   (3) 

Where L is the length of the road segment under observation. 

Distance headway h is the road length covered by vehicles during 

time headway to align to conditions ahead [33]. Perception 

headway is road length covered when a driver perceives traffic 

conditions, while the time taken is perception time. A driver then 

takes action to align to conditions during reaction time headway. 

The distance covered during reaction is known as reaction 

distance headway. The distance headway is a sum of perception 

and reaction headway. While time headway is the sum of driver 

perception and reaction time. Distance headway is based on 

traffic density.  

For high traffic density (i.e. congestion), the distance headway is 

smaller for drivers to align. Thus, it takes traffic longer to align. 

During free traffic flow, the distance headway is larger allowing 

quick alignment between vehicles as conditions are predictable. 

Distance headway can be calculated from traffic density using (4) 

[30] 

ℎ =
1

𝛿
.   (4) 

Traffic sensitivity ∇ is a measure of driver behavior [33]. A non-

aggressive driver is less sensitive thus taking a longer distance 

headway to align to conditions ahead. An aggressive driver is 

more sensitive and takes a smaller distance headway to align. 

This results in a smaller change in distance headway. An 

equilibrium driver behavior is based on traffic density, taking an 

appropriate distance headway to align resulting in equilibrium 

traffic flow. Traffic sensitivity can be calculated using (5) [31] 

 

𝛻 =  
1

𝛻ℎ
.            (5) 

 

Where ∆ is the change in distance headway. For equilibrium 

traffic flow, equilibrium density δe can be calculated using (6) 

 

𝛿𝑒 =  𝛿𝑚 (1 −  
𝑣(𝛿)

𝑣𝑓
),   (6) 
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where δm is the maximum density, vf is the velocity limit, and v(δ) 

is the equilibrium velocity distribution. Traffic sensitivity at 

equilibrium ∇e is based on the distance headway at equilibrium, 

that is 

ℎ𝑒 =  
1

𝛿𝑒
,    (7) 

 

and sensitivity is 

 

∆𝑒=  
1

∆ℎ𝑒
.     (8) 

Fundamental diagram gives the characteristics of traffic flow on 

any given road. This diagram shows the critical flow, free flow 

and congested flow. The traffic flow congestion is due to either 

flawed infrastructure design\conditions or driver behavior. A 

driver's behavior is affected by the driver’s ethnicity, age, 

psychological or physiological conditions, geographical location, 

traffic flow type, and meteorological conditions [34]. Beyond 

critical density, traffic flow becomes congested and results in stop 

and go traffic behavior. Critical flow is the maximum optimum 

utilization of road capacity and varies based on road conditions.  

Critical density ∝ from fundamental diagram is calculated as 

 

𝛼 =
𝜇

𝑣
.     (9) 

 

Driver presumption σ is characterized by the traffic changes 

ahead and is obtained from the gradient of the fundamental 

diagram. For simplicity, driver presumption can be calculated 

using (10) [32] 

 

𝜎 =  
∆𝛾

∆𝑣
.     (10) 

   

For smaller changes in velocity, a driver presumption is large, 

which causes stop and go traffic. Whereas for larger changes, a 

driver presumption is small, which causes smooth alignment 

between vehicles and the flow is smooth. 

V. CONCLUSION 

For sustainable and smart cities of the future, smart mobility has 

emerged as the primary challenge. With advancement in 

technology, ITS based smart mobility solutions are being 

proposed. In this regard, real-life traffic flow parameters are a 

fundamental building block for proposing ITS based solutions. In 

existing literature, varying solutions have been proposed for 

traffic flow characterization such as intrusive and non-intrusive 

sensors. However, these solutions are limited by their ability to 

provide all traffic flow parameters. Furthermore, these solutions 

have serious performance limitations under congested and 

heterogeneous traffic conditions. To overcome these limitations, 

compute vision-based solutions have emerged as the most 

optimum solution for traffic flow characterization. Its advantages 

range from their ability to provide a full spectrum of traffic flow 

parameters under all traffic conditions. As well as the ability to 

count all kinds of on-road objects such as pedestrians, bicycles, 

bikes, and animal/human driven carts. 

In this work, compute vision-based edge computing solutions 

are compared and analyzed. Major advantage of edge computing 

solutions over IoVT solutions is elimination of video streaming 

bandwidth requirements. A detailed review of edge computing 

solutions in existing literature has been undertaken. It was 

concluded that the primary constraint is compute resources of 

SBCs. Because of which at most only two flow parameters such 

as count, count/speed or count/classification can be measured. To 

overcome this limitation, mathematical traffic characterization 

solutions have been detailed in this work. Using these 

mathematical equations, already proposed solutions in literature 

can be optimized to measure the full spectrum of traffic flow 

parameters such as traffic flow, density, critical density, 

time\distance headway, traffic sensitivity and driver 

presumptions.  

In future, we plan to develop an edge computing solution for 

traffic flow characterization using RPi 4. To fully utilize the 

compute resources of RPi we will use multiprocessing 

techniques. Using measured traffic count and speed parameters, 

an attempt will be undertaken to provide all traffic flow 

parameters. 
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