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Abstract- In this work, we explore the transient response of an electric circuit using probabilistic analysis when the precise value
of the characteristic parameter of a circuit element is not known and is instead constrained to a range of values. To accomplish
this, a combination of probability theory and traditional circuit analysis techniques is employed. In this approach, parameters
of the circuit elements are considered as the random variable. Therefore, probability methods are applied to derive probability
distributions across. In this approach, the circuit element’s parameter is treated as a random variable, and probability methods
are used to derive the probability distribution of the current and across circuit elements. To demonstrate this approach, we
apply it to a resistor capacitor (RC) circuit, where the capacitance is regarded as a random variable. We derive probability
distributions for the transient voltage across the capacitor and the voltage at the output terminals to illustrate the method’s
effectiveness.

Index Terms– Circuit probability distribution, RC circuit, transient response, voltage random variable, voltage prediction.

I. INTRODUCTION

Electric circuits can be analysed using various techniques in
either the time or frequency domains. Mesh and nodal analysis,
for example, are essential techniques that can be employed in
a variety of circuits under varying circumstances [1–4]. These
principal techniques underpin several fundamental theorems used
in circuit analysis, such as superposition, Thevenin, Norton, and
maximum power transfer, which are utilized to analyze different
types of circuits [5]. In a continued research on circuit analysis
techniques, some recently proposed theorems and algorithms are
presented in [6–9].

RC circuits are important in many applications of electrical
and electronic engineering and are an active topic of research.
Bridged-T and parallel-T RC networks have been investigated
in [10] for single resistance control of notch frequencies. It is
concluded that bridged-T RC network provides better selectivity
compared with parallel-T RC network single resistor control is
used. The effect of low pass RC filter on wireless power transfer
has been studied in [11]. It is found that the RC circuit affects the
radio frequency bandwidth as the harmonics are removed. It also

influences the ripple voltage at the rectifier output. An analytical
framework using Fourier series is developed to characterize the
influence of RC filter on the performance of wireless power
transfer. In [12], the authors propose a new structure of RC poly
phase filter. The proposed structure uses smaller area and reduces
loss without significantly influencing the phase shift performance.
The proposed structure is demonstrated by designing a two stage
RC poly phase filter which uses 30% smaller area compared
with a conventional filter while the loss is reduced by more
than 0.6 dB. The work in [13] proposes a method to improve
the power utilization efficiency of active RC, continuous time,
delta sigma modulator. To improve the power efficiency of the
modulator, a large capacitor is introduced in the first amplifier at
the virtual ground node. A low pass, low voltage, active RC, fully
differential, fourth order Butterworth filter is proposed in [14].
The cutoff frequency is programmable with a resistor bank to four
values of 20, 40, 80 and a maximum value of 160 MHz. The RC
filter is designed for communication systems operating at the low
voltage of 0.6 V. Dynamically activated electrostatic discharge
protection is explored in [15]. The work shows that the RC
trigger circuit of a high voltage Darlington electrostatic discharge
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protection affects its performance, and proposes a methodology to
evaluate the RC value subject to the constraints of the application.

Deterministic analysis is utilized in all these investigation
techniques for electric circuits to achieve a solution as the
nominal values of the parameters of circuit elements are used
for the analysis. However, certain situations may arise where
the circuit element no longer operates within the tolerance
specifications of the nominal value and the precise value of a
circuit element’s characteristic parameter is not available, such
as when an element of a circuit malfunctions. The circuit element
may operate at values outside the tolerance limits of the nominal
value. Deterministic analysis may not be performed under these
circumstances as the nominal value of the circuit parameter
is not available. Such a situation is analysed in [16], where
a probabilistic investigation of a failed resistor capacitor (RC)
circuit is performed. The capacitance of a failed capacitor is
considered to be in an interval of values. A probability model
of the exponentially rising transient response of the RC electric
circuit is developed. The analysis of a resistor inductor (RL)
circuit is presented in [17] using probability methods. In RL
circuit, the value of inductance is partially known and therefore
transient response of the RL circuit is investigated by exploiting
the probability theory.

To address these scenarios, we propose the use of probability
modeling alongside deterministic analysis. Probability theory and
modeling are commonly utilized with successful results in various
engineering problems, such as noise and channel modeling in
electrical communication systems, reliability analysis in civil and
mechanical engineering, big data analysis, artificial intelligence
and machine learning [18–22]. In this article, we extend and
further develop the work in [16] and [17]. We examine the
decaying transient response of an RC circuit example in which
the capacitance of the capacitor is not precisely known but
exists within a range of values. We treat the capacitance as
a continuous random variable with uniform distribution and
employ conventional analysis techniques to obtain a general
expression for the transient response in terms of the voltage
across the capacitor in Section II. We subsequently determine
the cumulative distribution function and the probability density
function of the voltage across the capacitor in Section III.
Furthermore, we obtain the cumulative distribution function
(CDF) and probability density function (PDF) of the voltage at
the circuit’s output terminals to demonstrate our approach. The
paper concludes with Section IV.

II. TRANSIENT RESPONSE OF RC CIRCUIT
In this section, the transient response of an RC circuit, Figure
1, using conventional circuit analysis techniques is investigated.

The circuit includes a capacitor with a capacitance C that is
only known to be within a continuous range of values. It is
to be noted that the continuous range of values may be well
beyond the specified tolerance limits of the nominal value of
the capacitance. Consequently, the capacitor no longer operates
within the tolerance limits of its nominal value. It should further
be noted that the capacitance can be any random value from
the continuous interval which remain fix during the transient
response. Apart from the capacitor, all other circuit elements
operate at their nominal values. We assume that the parasitic
resistance and inductance of the capacitor are negligible and are
ignored. To demonstrate our probabilistic analysis strategy, we
use a numerical example of the circuit shown in Figure 1. The
result obtained in this section is then utilized for probabilistic
analysis in Section III.

Before opening switch S1 at t < 0, we analyze the circuit to
determine its initial conditions when the switch is opened at t =

0. Circuit is in the steady-state conditions when the switch is
closed at t < 0. Therefore, at this state, the capacitor is open and
charged, as shown in Figure 2. We calculate the currents at node
vo(0−) to establish the initial conditions.

vo(0−) = 12 V. (1)

Now, in Figure 2, at t < 0, let the current flowing from 24 V
battery to 2 Ω resistor be represented by I1. The current I1 is
given by,

I1 = 2 A. (2)

From the left loop in Figure 2 containing the voltage source V1,
the 2 Ω resistor and the capacitor with voltage vc(0−) at t < 0,
the sum of voltages yields,

vc(0
−) = 20 V. (3)

vc(0
−) is the voltage across the capacitor before the opening of

the switch at t = 0. As the capacitor voltage does not change
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FIGURE 1. RC circuit for the transient response investigation.
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FIGURE 2. At t < 0, the circuit shown in the figure is in a steady
state where the switch S1 is closed, the capacitor is fully charged,
and it is open.

instantaneously, the capacitor voltage after closing the switch at
t = 0+ or simply at t = 0 remains unchanged. Therefore,

vc(0) = vc(0
+) = vc(0

−) = 20 V. (4)

Let us now analyze the circuit at t > 0 after the switch
S1 is opened. At t > 0, the branch containing the switch
S1 is no longer in the circuit as is shown in Figure 3. If
the capacitor voltage is represented by vc, then considering the
currents entering and leaving the node at the top of the capacitor
in Figure 3, we obtain,

8C
dvc
dt

+ 5vc = 96. (5)

This is first order differential equation whose general solution is
given by

vc(t) = k1 + k2e
− t
τ , (6)

where k1, k2 and τ are constants. τ is the time constant which is
a characteristic of the circuit. The constants are found to be:

k1 =
96

5
, (7)

������

��

���

��

���

�� ���
�� ���

	� 	�
�

������

��


�
���


�
���

FIGURE 3. At t > 0, the switch S1 is opened in the circuit
shown in the figure. The branch containing the switch S1 is no
longer part of the circuit.

k2 =
4

5
, (8)

τ =
8C

5
seconds. (9)

Therefore, from (6),

vc(t) =
96

5
+

4

5
e−

5
8C t. (10)

From (10), we can observe that at t = 0 and t = ∞, vc is 20 V
and 19.2 V respectively. Therefore, the transient voltage across
the capacitor exhibits an exponential decay. We plot this transient
response for a convenient value of C = 4 F in Figure 4.

From Figure 3, it is evident that resistors R2 and R4 are in
series when the switch S1 is open. Therefore, we can obtain vo(t),
as under,

vo(t) =
48

5
+

2

5
e−

5
8C t V. (11)

From (11), we get vo 10 V and 9.6 V at t = 0 and t = ∞
respectively. Hence, the RC circuit exhibits an exponential decay
in its transient response.

III. PROBABILITY DISTRIBUTION
This section is focused on deriving the probability distribution of
the transient response using the result obtained in Section II. As
mentioned in Section II., the capacitance C has equal probability
of taking any value within a continuous interval. In probability
theory, this phenomenon is modeled using the continuous uniform
distribution. Therefore, C can be treated as a continuous uniform
random variable in our problem. Consequently, the capacitor
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FIGURE 4. As the switch S1 is opened, the voltage across
the capacitor decays exponentially from vc = 20 V at t = 0 to
vc = 19.2 V at t =∞.
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voltage is also a random variable that is dependent on the random
variable C. It is to be noted that an alternate and appropriate
probability distribution can be used to model the capacitance
random variable if the nature of the capacitor fault is different
such that the values of the capacitanceC are not equally probable.
The alternate probability distribution may be chosen depending
on the nature of the capacitor fault and the information available
about it. Throughout this work, random variable and its value
is denoted by a capital and lowercase letters respectively. For
instance, the value of any random variable x represents any of the
possible values that the random variable X can take.

A. CDF OF Vc
Assuming that C lies within a continuous interval bounded by a
and b, and it takes any of the values within this interval with equal
probability, it can be considered as a continuous random variable
uniformly distributed between a and b. In this case, the PDF of
C, fC(c), is given by,

fC(c) =

{
1

b−a a ≤ c < b,

0 otherwise,
(12)

where both a and b are constants and fulfills the condition that
b > a > 0. Similarly, the CDF of C, FC(c), is given by,

FC(c) =


0 c ≤ a,
c−a
b−a a < c ≤ b,
1 c > b.

(13)

For 0 < t ≤ 5τ , the circuit is in the transient state. Let us consider
a time within this transient period, given by,

t =
nτ

C
, (14)

where n can be derived as ,

0 < t ≤ 5τ,

0 <
nτ

C
≤ 5τ,

0 < n ≤ 5C.

From (12) and (13), we know C is a uniform random variable and
a < c ≤ b. Therefore, n in the transient state is,

0 < n ≤ 5a. (15)

Substituting (9) in (14), we obtain,

t =
8

5
n. (16)

Using this value in (10), we get the following relationship
between C and the derived random variable Vc,

Vc =
96

5
+

4

5
e−

n
C . (17)

Vc is a random variable which is derived from C. From (17),

C =
−n

ln

[
5
4

(
Vc − 96

5

)] . (18)

For a uniform(a, b) random variable C, C > 0. Therefore, the
denominator in (18) fulfills,

ln

[
5

4

(
Vc −

96

5

)]
< 0, (19)

so that we can obtain C > 0.
Now, to derive the PDF fVc(vc) of Vc, let us first derive the

CDF FVc(vc), which is given by,

FVc(vc) = P [Vc ≤ vc]. (20)

Using (17), we can rewrite Vc ≤ vc, as following,

96

5
+

4

5
e−

n
C ≤ vc, (21)

C ≤ −n

ln

[
5
4

(
vc − 96

5

)] . (22)

From (20) and (22), we obtain,

FVc(vc) = P

C ≤ −n

ln

[
5
4

(
vc − 96

5

)]
 , (23)

FVc(vc) = FC

 −n

ln

[
5
4

(
vc − 96

5

)]
 . (24)

Therefore, from (13), we obtain,

c− a
b− a

=
−n

(b− a)

[
ln
[
5
4

(
vc − 96

5

)] ] − a

b− a
. (25)

To completely determine FC(c), we need to evaluate three
different intervals which correspond to c ≤ a, a < c ≤ b and
c > b as can be seen from (13). These are evaluated in the
following. For c ≤ a, using (18), we obtain,

−n
ln
[
5
4

(
vc − 96

5

)] ≤ a, (26)

vc ≤
96

5
+

4

5
e−

n
a . (27)
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Now the expression for interval c > b can be derived by
employing (18) ,

−n
ln
[
5
4

(
vc − 96

5

)] > b, (28)

vc >
96

5
+

4

5
e−

n
b . (29)

Similarly, expression obtained for a < c ≤ b using (18) is,

a <
−n

ln
[
5
4

(
vc − 96

5

)] ≤ b, (30)

96

5
+

4

5
e−

n
a < vc ≤

96

5
+

4

5
e−

n
b . (31)

Using (25), (27), (29) and (31), we can write the CDF FVc(vc), as
below,

FVc(vc) =


0

−n

(b−a)

[
ln
[

5
4

(
vc− 96

5

)]] − a
b−a

1

vc ≤
96

5
+

4

5
e−

n
a ,

96

5
+

4

5
e−

n
a < vc ≤

96

5
+

4

5
e−

n
b ,

vc >
96

5
+

4

5
e−

n
b .

(32)

B. PDF OF Vc
The PDF can be obtained from the CDF as below,

fVc(vc) =
dFVc

dvc
, (33)

fVc(vc) =
d

dvc

[
−n

(b− a)
[

ln
[
5
4

(
vc − 96

5

)] ] − a

b− a

]
, (34)

fVc(vc) =
n

(b− a)(vc − 96
5 )
[

ln
[
5
4 (vc − 96

5 )
] ]2 . (35)

The PDF fVc(vc) is, therefore, given by,

fVc(vc) =


n

(b−a)(vc− 96
5 )

[
ln[ 5

4 (vc−
96
5 )]
]2

0

96

5
+

4

5
e−

n
a < vc ≤

96

5
+

4

5
e−

n
b ,

otherwise.

(36)

This is confirmed to be a valid PDF as the following is found to
hold for (36),

+∞∫
−∞

fVc(vc)dvc = 1. (37)

C. EXPECTED VALUE OF Vc
The expected value of Vc is calculated as below,

E[Vc] =

+∞∫
−∞

vcfVc(vc)dvc, (38)

E[Vc] =

96
5 + 4

5 e
−n
b∫

96
5 + 4

5 e
−n
a

nvc

(b− a)(vc − 96
5 )
[

ln
[
5
4 (vc − 96

5 )
] ]2 dvc.

(39)

E[Vc]=
n

b− a

×

∣∣∣∣∣ −vc
ln
[
5
4

(
vc − 96

5

)] +
4

5
li

[
5

4

(
vc −

96

5

)]∣∣∣∣∣
96
5 + 4

5 e
−n
b

96
5 + 4

5 e
−n
a

,

(40)

E[Vc]=
1

b− a

[
b

(
96

5
+

4

5
e−

n
b

)
− a

(
96

5
+

4

5
e−

n
a

)]
+

4n

5(b− a)

[
Ei
(
−n
b

)
− Ei

(
−n
a

)]
.

(41)

D. EXAMPLE FOR Vc

To provide a specific example, consider the case where a = 3 and
b = 5, resulting in an expected value of E[C] = 4 F. Substituting
these values into (12) and (13), we obtain the following PDF of
C for this interval:

fC(c) =

{
1
2 3 ≤ c < 5,

0 otherwise,
(42)

The corresponding CDF is given by,

FC(c) =


0 c ≤ 3,
c−3
2 3 < c ≤ 5,

1 c > 5.

(43)

Taking (15) into consideration, let n = a = 3, so that from (16),
we get t = 4.8 s. From (9), we note that t = 4.8 < τ , and it lies
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within the transient state given that 3 < c ≤ 5. Using n = a = 3

and b = 5 in (32), we obtain,

FVc(vc) =


0 vc ≤ 19.494,

−3
2 ln

[
5
4

(
vc− 96

5

)] − 3
2 19.494 ≤ vc < 19.639,

1 vc > 19.639.

(44)

Similarly from (36), we get,

fVc(vc) =


3

2(vc− 96
5 )

[
ln[ 5

4 (vc−
96
5 )]
]2 19.494 < vc ≤ 19.639,

0 otherwise.

(45)

The CDF and the PDF for this example are plotted in Figure 5
and Figure 6 respectively.

Let us now, for example, calculate P [Vc ≤ 19.60]. This can be
calculated using either the CDF or the PDF. However, it is easier
to use the former. Therefore, from (44), we obtain,

P [Vc ≤ 19.60] = FVc(19.60) = 0.664.

It can be observed from (44) and (45) that FVc(vc) = 0 and
fVc(vc) = 0 for vc < 19.494. Therefore, P [Vc ≤ 19.60] implies
P [19.494 < Vc ≤ 19.60]. In words, it can be stated that the
probability that vc is between 19.494 and 19.60 at t = 4.8 s is
66.4%. This also implies that the probability that vc is between
19.60 and 19.639 at t = 4.8 s is 33.6%.

It would be interesting to calculate the probability for some
other value of voltage for the specific case under consideration.
For example, P [Vc ≤ 19.50] is found out to be as follows,

P [Vc ≤ 19.50] = FVc(19.50) = 0.0293.

Voltage V
c
(V)

19.48 19.51 19.54 19.57 19.6 19.63 19.66

C
D

F
 F

V
c

(v
c
)

0

0.2

0.4

0.6

0.8

1

FIGURE 5. The cumulative distribution function (CDF) FVc(vc)

where C is a uniform random variable between 3 and 5.

Voltage V
c
(V)

19.48 19.51 19.54 19.57 19.6 19.63 19.66

P
D

F
 f

V
c

(v
c
)

4

5

6

7

8

9

10

FIGURE 6. The probability density function (PDF) fVc(vc) when
C is a uniform(3, 5) random variable.

The probability at any other time instant can be calculated by
using an appropriate value of n. The probability values for
P [Vc ≤ 19.50] are calculated for different values of n, and are
summarized in Table I.

We can calculate the expected value of Vc also for the particular
case when n = a = 3 and b = 5 as follows,

E[Vc] =

19.639∫
19.494

3vc

2(vc − 96
5 )
[

ln
[
5
4 (vc − 96

5 )
] ]2 dvc, (46)

E[Vc] = 19.595 V. (47)

E. CDF AND PDF OF Vo
It is worth noting that the output voltage Vo is also a
stochastic variable, and its probability density function (PDF) and
cumulative distribution function (CDF) can be obtained through a
process similar to the one applied for Vc. Alternatively, the CDF
FVo(vo) and PDF fVo(vo) for Vo can be derived from (32) and
(36). From (11), we have,

Vo =
1

2
Vc (48)

TABLE I
PROBABILITY P [VC ≤ 19.50] FOR DIFFERENT

VALUES OF n
n t P[Vc ≤ 19.50]

3.0 4.8 0.0293
3.5 5.6 0.2842
4.0 6.4 0.5391
4.5 7.2 0.7940
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Therefore, Vo is a derived random variable which is a function
and constant multiple of Vc. Hence, if Vo = kVc, then

FVo(vo) = FVc(
vo
k

), (49)

fVo(vo) =
1

k
fVc(

vo
k

). (50)

It can be seen from (48) that k = 1
2 in this case. Therefore, from

(32), (36), (49) and (50), we obtain,

FVo(vo) =


0

−n

(b−a)

[
ln
[

5
2

(
vo− 48

5

)]] − a
b−a

1

vo ≤
48

5
+

2

5
e−

n
a ,

48

5
+

2

5
e−

n
a < vc ≤

48

5
+

2

5
e−

n
b ,

vc >
48

5
+

2

5
e−

n
b .

(51)

fVo(vo) =


n

(b−a)(vo− 48
5 )

[
ln[ 5

2 (vo−
48
5 )]
]2

0

48

5
+

2

5
e−

n
a < vo ≤

48

5
+

2

5
e−

n
b ,

otherwise.

(52)

As an example, for n = a = 3 and b = 5, we have,

FVo(vo) =


0 vo ≤ 9.747,

−3
2 ln

[
5
2

(
vo− 48

5

)] − 3
2 9.747 ≤ vo < 9.820,

1 vo > 9.820.

(53)

fVo(vo) =


3

2(vo− 48
5 )

[
ln[ 5

2 (vo−
48
5 )]
]2 9.747 < vo ≤ 9.820,

0 otherwise.

(54)

As demonstrated in the case of FVc(vc) and fVc(vc), the CDF and
PDF in (53) and (54) can be used for the probabilistic analysis of
output voltage vo.

IV. CONCLUSION
In this article we obtain the cumulative distribution function and
probability density function for the voltage across a component

in an electric circuit. Specifically, our analysis concentrates
on an RC circuit, in which the capacitance of the capacitor
is considered a uniformly distributed random variable. By
combining conventional analysis with probability theory, we
derive the cumulative distribution functions and probability
density functions for both the voltage across the capacitor and
the voltage at the output terminals.
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