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 Abstract-.  In wireless communication, it is a challenge to find the accurate position of moving objects. The present work proposes 
that the global positioning system (GPS) receiver to measure the position and velocity of moving objects. These measurements 
are dynamic, and the Least Squares (LS) technique is used to linearize the measurement for further processing. The time 
difference of arrival (TDOA) methodology was also applied. The obtained data is then processed through a Kalman filter to 
mitigate non-line-of-sight errors and smoothen the range values. The Kalman filter applies standard deviation on received data 
and performs an NLOS/LOS hypothesis test. By processing the received data, the algorithm generates readings that mitigate 
the NLOS error and reduces position error. The proposed recursive tracking algorithm will be comparatively more robust to 
measurement errors because it updates the technique that feeds the position corrections back to the Kalman Filter. It 
compensates for the measured geometrical position and decreases random error influence to the position precision for tracking 
of moving objects. The simulations demonstrate that the proposed algorithm reduced the noise by 28.64% and 34.4% in LOS 
and NLOS regions respectively. These findings indicated that the accuracy of object tracking was significantly improved as 
compared to other algorithms while also being less computationally intensive and cost-efficient.  

 

Index Terms— Global Positioning System (GPS), Time Difference of Arrival (TDOA), Kalman Filter, Line of Sight (LOS), Non-line of Sight 

(NLOS).  

 

I.     INTRODUCTION 
Determining and tracking the precise location of non-stationary 
objects is still a focal point of many researchers. There have been 
numerous methodologies developed and utilized to accurately 
track mobile items [1]. Amongst these, the Global Positioning 
System (GPS) is one of the most popular ones [2]. However, this 
method has its drawbacks regarding accuracy errors.  

One of the main reasons this area of research remains such a 
hotbed of research activity is the fact that Radio Frequency 
Interference has become increasingly difficult to deal with via 
current techniques. Due to the increasing reliance on radio 
communication, the atmosphere has become polluted with 
numerous radio frequencies that interfere with one another thereby 
increasing the noise surrounding the position tracking of any object 
[3]. 

Three factors affect the ability to track any object – Motion 
sensors, GPS units, and the tracking algorithm. Among these three, 
the one factor that is lacking behind the other two is the tracking 
algorithm. Since the sensitivity of the motion sensors and the GPS 
units is at its most advanced due to technological advancements, 
the tracking software is the limiting aspect that prevents accurate 
tracking of moving targets. Due to this, researchers have tried to 
augment the accuracy of current algorithms by combining different 
types together with the hopes of combining the benefits and 
mitigating the drawbacks of each of those algorithms [4]. One of 
the major effects that impact the accurate tracking of moving 
objects is the multipath fading effect. In areas, where Non-Line of 

Sight (NLOS) is present like in the vicinity of multiple high-rise 
buildings, tall trees, or tunnels, the signal from the base is reflected 
off several objects before it reaches the receiver. This creates 
multiple paths from the initial signal that can have distorted 
frequencies, amplitudes, and phases at the receiver end resulting in 
perceived noise. This effect is especially detrimental to non-
stationary object tracking as the multipath fading effect is amplified 
due to the motion of the receiver [5]. Hence, the primary objective 
of this research is to minimize the multipath fading effect and thus 
reduce radio frequency interference through post-processing the 
signal via powerful algorithms. 

The GPS is one of the most popular tools utilized for object 
tracking however it is limited by the number of satellites used. This 
limitation results in an average accuracy of 5 to 10 meters from the 
target object where there are few hindrances for the GPS signal and 
a significantly reduced accuracy when NLOS exists [6]. Due to the 
popularity of GPS and its receivers, researchers have kept a keen 
focus on integrating this technology with various other tracking 
methodologies to solve the accuracy conundrum [7]. However, this 
dilemma remains unsolved despite the greater use of wireless 
communication and the development of various technologies such 
as the 4G/5G networks. 
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TABLE I 
 LITERATURE REVIEW 

Author Title Methodology Shortcomings 

Peng 
Wu at 
el 

[8] 

Time Difference 
of Arrival 
Localization 
Combining 
Weighted Least 
Squares and 
Firefly Algorithm 

This paper 
proposes a hybrid 
firefly algorithm 
(hybrid-FA) 
method, 
combining the 
weighted least 
squares (WLS) 
algorithm and FA.  

The proposed 
algorithm works to 
reduce the 
computational 
power the for 
localization of 
TDOA. It also 
increases the 
accuracy the of 
target. But it does 
not work on NLOS 
tracking. 

Zou J 
et al 

[9] 

“Mobile Location 
Estimator with 
NLOS Mitigation 
using Kalman 
Filtering” 

The method 
involves 
identifying the 
propagation 
channel using a 
Gaussian Mixture 
Model (GMM), 
followed by a 
limiting filter to 
mitigate the Non-
Line-of-Sight 
(NLOS) error, 
and finally, 
regression is used 
to smooth the 
positioning result.  

The proposed 
method does not 
explain its 
implementation, 
computation time, 
accuracy under 
specific conditions, 
comparison with 
existing methods, 
scalability, or 
generalizability to 
different scenarios 

Noha 
El 
Gemay
el at al 

[10] 

“A Hybrid 
TDOA/RSSD 
Geolocation 
System using the 
Unscented 
Kalman Filter” 

With the help of 
TDOA and 
Received Signal 
strength 
difference 
(RSSD) 
geolocation is 
estimated and by 
the use of an 
Unscented 
Kalman filter 
(UKF), hybrid 
geolocation is 
investigated.  

The method suffers 
from large errors in 
many scenarios. 
There is also the 
absence of the 
effect of unknown 
path loss 
exponents which 
may be 
investigated in 
estimating the 
exponent as a 
parameter in the 
Kalman Filter 

Kandur
i at el 

[11] 

“Evaluation of 
TDOA based 
Football Player's 
Position Tracking 
Algorithm using 
Kalman Filter” 

 The Gauss-
Newton method is 
used for solving 
nonlinear least 
squares problems 
more efficiently 
compared to 
Newton's method 
and the Kalman 
filter is applied 
for optimal 
recursive data 
processing.  

The Antenna 
arrays are located 
at various positions 
on the ground and 
also require a lot of 
transmitters that 
attach to players. It 
increases the cost. 

Fokin 
et al 

[12] 

“TDOA 
measurement 
processing for 
positioning in 
Non-Line of Sight 
Conditions” 

Developed and 
verified of three-
stage TDOA 
measurements 
processing 
algorithm for 
positioning a 

The abstract 
mentions that the 
investigation did 
not take into 
account non-line-
of-sight (NLOS) 
conditions and the 

transmitter when 
there are up to 
two receivers 
with NLOS 
measurements 
and taking into 
account actual 
path loss. 

effects of signal 
power loss due to 
propagation.  

 

 
The objective of the presented work is to improve the accuracy 

of position-tracking algorithms. Before beginning on improving 
the accuracy, it is important to understand what factors affect the 
result. As mentioned before, the two major forms of Radio 
Frequency (RF) wave transmission are Line-Of-Sight (LOS) and 
Non-Line-Of-Sight (NLOS). During LOS, the transmitting 
antenna radiates the RF wave directly to the receiving antenna, 
with no hindrance present between them, while an NLOS 
condition occurs when there are hindrances present between the 
receiver and transmitter. As a result, it can be understood that 
during the LOS condition, the error is mostly represented by the 
Time-Difference-Of-Arrival (TDOA) noise. This noise can be 
easily simulated via a “Zero Mean Gaussian Random Variable” 
allowing us to readily study it, predict it, and solve it. However, 
during an NLOS condition, the RF wave undergoes various 
phase, frequency, and amplitude changes due to its interaction 
with the environment caused by reflection, diffraction, and 
scattering. Therefore, it results in unpredictable noise known as 
path loss which is amplified the more the RF wave interacts with 
its environment. Due to this, it makes it difficult for the tracking 
algorithms to remove such noise as random error is extremely 
difficult to navigate resulting in poor accuracy.  

Keeping in consideration the issues faced by GPS tracking, this 
research aims to contribute the following to position tracking:  

1. A hybrid approach that combines GPS, and Kalman filter 

to predict the position of a moving object. 
2. Remove the convergence issue when objects move in a 

non-line-of-sight environment (NLOS). 
3. Enhancing the accuracy of position estimation of moving 

objects. 

The research motivation is to minimize the errors of tracking any 
object and estimate its location when it is in NLOS condition. This 
research aims to provide optimum and cost-effective solutions for 
accurate target tracking of moving objects. 
This paper is organized as, Section I has an introduction and 
related work. Section II explained the methodology, and the 
results are provided in Section III. While the last sections 
(Sections IV and V) conclude the proposed research work and 
recommendations for future work respectively. 
 

II. METHODOLOGY 

The most common trilateration method that is used to locate any 
object on earth is a Global position system (GPS). At least 03 
satellites are required in this method for calculating the location 
of the object on earth. In Fig. 1, three large circles represent the 
footprints of satellites shown behind the earth map. The common 
point where circles bisect each other indicates the position of the 
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target object on Earth. If the number of satellites increases, then 
object position accuracy is improved. 

 

FIGURE 1. GPS Calculating the position of an object by trilateration method 

 

Despite being extremely common, GPS is affected by several 
prominent factors that reduce the accuracy of its object-tracking 
abilities. Some of these major ones include the long distances 
between the satellites and the earth (thousands of Kilometers) 
resulting in weak signals at the receiver, the presence of uneven 
atmospheric conditions, and a continuous threat of signal jamming. 
These factors only exacerbate the noisy effects caused by NLOS 
conditions such as an object being present in compact areas like 
rooms (resulting in signals bouncing off a lot of other objects), in 
the middle of a forest, under a tunnel, or in a cityscape [13].  

Hence, the main objective of this research work is to mitigate the 
NLOS error thereby improving the accuracy of tracked objects. We 
propose using the Kalman filter to resolve these issues as it is a 
cost-effective solution that is also computationally less intensive 
and more efficient as compared to other algorithms [14]. However, 
before we can apply the Kalman filter we must figure out how to 
exactly locate an object via GPS. The best way to do this is by 
calculating the Time Difference of Arrival (TDOA) which is 
calculated by determining the difference in arrival time of signals 
between different emitting sources [15]. 

A. PROPOSED FRAMEWORK 

This research work specifically investigates the position of 
moving objects by GPS measurement system and focuses on 
improving the accuracy of moving objects by investigating GPS 
positioning accuracy and by modifying the Kalman filter 
algorithm as illustrated in the flow diagram in Fig. 2. 
Traditionally, the least squares method is used to solve equations 
for GPS positioning. However, this study proposes a modified 
Kalman filter algorithm as an alternative approach to improve the 
accuracy of moving objects. 

In phase I, the Global Positioning System (GPS) receiver is 
connected to some form of an intelligent electronic system such as 
an Android 4 G-enabled phone. However, to receive GPS signals, 
a dedicated application must be installed such as the MATLAB 
Sensor Acquisition app. Once these prerequisites have been met, 
the receiver (Android phone) can be used as a trackable object 
where its GPS data can be gathered and stored onto a dedicated 
MATLAB cloud server for future use. In phase II, the stored GPS 
data of the phone is extracted from the cloud and stored locally for 
further processing. MATLAB processing techniques are utilized to 

convert raw GPS data into an executable form that can be used to 
develop a geographic plot. However, this geographic plot is not 
compatible with the Kalman filter, so it is converted into a 
Cartesian plot. Lastly, in phase III, the Cartesian plot data is passed 
through the Kalman filter and converted into a Cartesian set. This 
set is then used to provide comparative results with position and 
velocity errors. The results compare the position estimates with and 
without the Kalman filter being applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Flow diagram of Proposed Methodology 

 
The GPS receiver starts working by capturing signals 

transmitted by GPS satellites through an antenna. The signals are 
then amplified to the required strength and matched with the output 
frequency from a chain of radio frequencies. Afterward, the signals 
are processed through software and converted into a digital format 
using an analog-to-digital converter (ADC). During the acquisition 
stage, the receiver can identify specific satellite signals, which are 
tracked to determine the transition phase of navigation data. 
Subsequently, sub-frames and navigation data are obtained from 
the navigation data. Ephemeris and pseudo ranges data can be 
extracted from the navigation data, which assists in determining the 
satellite's position. Ultimately, the receiver's location can be 
calculated by acquiring the satellite's position and pseudo ranges 
data. 

The following equation (1) will determine the receiver’s 
location: 

d� = �(x-x�)
� + (y-y�)

� + (z-z�)
� + Ct                              (1) 

 x1, y1, z1, and d1 are the coordinate locations of the GPS 
receiver and pseudo ranges will be obtained from the movement 
of a transmission signal. ‘C’ is the speed of light and ‘t’ is the 
receiver clock bias. 
 

Selection of GPS Receiver 

Installation of GPS receiving signal 

Software 

Android 4G enabled Phone. 

MATLB Sensor Acquisition App 

 

Gathering Sensor Readings 

Storing Data in MATLAB Cloud Server 

Phase-1 

Extract data from Cloud server to System 

 

Processing of Raw data in executable 

form  

Laptop 

MATLAB Processing Techniques

Develop geographic position from data 

 

Convert Geo plot to Cartesian Plot 

 

Phase-2 

Process this data through Kalman filter 

Converting the estimated value in 

Cartesian set  

Display the comparison results with 

Position and velocity error 

Phase-3 
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The method of least squares is a technique used to approximate 
solutions for over-determined systems, where there are more 
equations than unknowns. It is often used in data fitting, where the 
aim is to find the best fit between modeled data and observed data 
in a least-squares sense, meaning that the sum of the squared 
residuals is minimized. A residual is the difference between the 
observed value and the value predicted by the model. 

In GPS, the observation equation is non-linear, making it a non-
linear least squares problem. To find the position and clock error 
of a GPS receiver using the least squares method, the non-linear 
least squares (NLS) algorithm is used.  

�� = �(� − ��)� + (� − ��)� + (� − ��)� + ��  

�� = �(� − ��)� + (� − ��)� + (� − ��)� + �� 

�� = �(� − ��)� + (� − ��)� + (� − ��)� + �� 

… 

�� = �(� − ��)� + (� − ��)� + (� − ��)
� + ��                  (2) 

 

 

 

 where (�, �, �) are the coordinates of the GPS satellite in the 
‘Earth Centered Earth Fixed (ECEF) frame’ and �� is pseudo 
range observation, a subscript is a satellite number and has 
value1,2,3, … , �. (��, ��, ��) is the GPS receiver position in the 
ECEF frame. In Equation (2), ′��

� is calculated from the GPS 
receiver, (�, �, �) are precisely calculated from ephemeris data 
and are four unknowns needed to be found by solving the 
equations. Obviously, Equation (2) is non-linear and there are 
usually more than four satellites being tracked or in view, making 
it an overdetermined problem. In simpler terms, we have more 
information than we need to solve the problem, and the equation 
is complex and requires solving four unknowns. When dealing 
with a non-linear least square problem, there is no analytical 
solution available. Therefore, numerical algorithms are used to 
compute the values of (��, ��, �� , �) that minimize the sum of 
squared residuals, denoted by M. The residuals are the differences 
between the measured GPS receiver distances ′��

� and the 
distances computed using the (��, ��, ��, �) values. In simpler 
terms, we use numerical methods to find the best-fit values that 
minimize the difference between the measured and computed 
distances. 
        � =  ∑ ��

��
���                                                                       (3) 

 
Residual value is given as:  
       �� = �� − ��

�                                                                             (4) 
The algorithm for finding the true values involves an iterative 

process, where initial values for these parameters are chosen. The 
predicted pseudo range value corresponding to the estimated 
values is then calculated. In each iteration, Equation (3) is 
linearized by approximating it to a first-order Taylor series 
expansion around the current estimate of (���, ���, ���, �̂). The 
Jacobian matrix J changes with each iteration. The iterative 

algorithm begins by determining an initial approximate value and 
its corresponding pseudo-range value ��

� . The algorithm then 
refines these values by successive approximation until the true 
values of (���, ���, ���, �̂) are found [16]. 

 
��� = �(� − ���)� + (� − ���)

� + (� − �̂�)
� + ��̂                       (5) 

 
To denote the difference between the true values 

(��, ��, ��, �)and the estimated values (���, ���, ���, �̂), we use the 
notation (∆��, ∆��, ∆��, ∆��)  and ∆�� = �� − ��

� , respectively [17]. 
By linearizing (2) around the estimated values(���, ���, ���, �̂), we 
obtain a first-order approximation of the equation. 

∆�� = ℎ��∆�� + ℎ��∆�� + ℎ��∆�� − ��� 

∆�� = ℎ��∆�� + ℎ��∆�� + ℎ��∆�� − ��� 

⋮                           ⋮                                  ⋮ 

∆�� = ℎ��∆�� + ℎ��∆�� + ℎ��∆�� − ���                                  (6) 

Let: 

∆� = [∆�� ∆�� …  ∆��]� , 

∆� = [∆�� ∆�� ∆��   − �∆��]
�, 

� =

⎣
⎢
⎢
⎡
ℎ�� ℎ�� ℎ�� 1

ℎ�� ℎ�� ℎ�� 1

⋮ ⋮ ⋮ ⋮
ℎ�� ℎ�� ℎ�� 1

   

⎦
⎥
⎥
⎤

 

Above equation can be written in matrix notations. 

∆� = (���)����∆�                                                             (7) 

 
NLOS solution is given in the following.   
 

(��, ��, ��, �) =  (��� + ∆��, ��� + ∆��, ��� + ∆��, ���, −�∆��) 

                                                                                                  (8) 
Initial values have a chance of large errors, so repetition based 

on the initial value is required to achieve closer to a true value. 
These values can be achieved nearly after 10 repetitions. 
 

The Kalman filter is a mathematical algorithm that can 
recursively process new measurements as they arrive. Its predictor-
corrector estimator is designed to minimize the estimated error 
covariance and is regarded as optimal. Using observed range data 
and determining the true range value, the Kalman filter can be used 
to estimate the state vector of a mobile target [18]. 
Xk+1 vector (size 2 × 1) that shows the position or state of the 
object and Wk vector (2 x 1) that indicates the input of the Kalman 
Filter.  
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The state or position vector: 

�(���) = ���� + ����                                                  (9) 

� = �
1 ∆t
0 1

� ,   B = �
0
∆t

�                                                                                  (10) 

 
 where �� = [��(�) ���(�)] is the state vector of the moving 
object, related to mth sensor. The  �� is the process noise vector 
with a covariance matrix � = ��

��, as shown in Fig. 3. y(k+1) is 
the measured data that represents the predictable GPS 
interpretation at time tK+1  [19]. 

The measurement process is  

�(���) = ���� + ��                                                            (11) 

 
The A and B matrices are transition matrices of size 2 × 2 that 

relate the current state and input to the next state, and the C matrix 
is the predictable state to the next GPS measurement, and �� is the 
measurement noise with covariance  � = ��

��.                                      

� = [1 0 ]                                                                              (12) 
Kalman Filter is a powerful method used to estimate the status 

of a system by combining noisy sensor outputs with uncertain 
dynamics. It consists of three main components: prediction, 
observation, and estimation. The Kalman filter is a linear and 
optimal algorithm that minimizes the variance of state sequences 
in dynamic systems. The dynamic system is mathematically 
described by the state equation and observation equation. The 
Kalman filter uses a combination of prediction and measurement 
to estimate the current state of a system while minimizing errors 
caused by uncertainties in the system [20]. 

 

 

 

 

 

 

 

 

FIGURE 3: Process noise and measurement noise covariance.  

Kalman filter operation is given as follows. 

First-time update by filter 

������ − �� = ���
�� − ��� − ��                        (13) 

The prior estimate error covariance is then 

����� − �� = ���� − ��� − ���� + ����                        

(14) 

The measurement update equation of the filter is: 

�(�) = ����� − ���� ������� − ���� + ���
��

                     

(15) 

The matrix K(k) minimizes the posterior estimate error 
covariance and it is the Kalman gain vector, 

��(�|�) = ������ − �� + ����(�) + ���(�|���)�                       

(16) 

������ = ����� − �� − �(�)������ − ��                        (17) 

 W here �(�) is the Kalman gain prediction and �(�|�) is the 

covariance matrix of ��(�|�)[20]. 

Kalman filter modified the ranges according to previous process 
data fed to it.      

The uncertainty of an object’s position is represented by the 
variation in the discrepancy between the time update estimate of 
the Kalman Filter and the GPS receiver measurement as follows 
[21]: 
   

Error = y(k) − CX(k|k−1)                              (18)  
 

The error value will reflect the multipath effect in the GPS 
receiver measurement. The number of these values should be 
neither too small nor too large to well represent the uncertainty of 
the recent position estimation [22]. When there is no multipath 
effect on an item, the GPS accuracy is good, the error values are 
small, and they are nearly equal. As a result, there won't be much 
variance in the error values. However, the accuracy of the GPS will 
be considerably impacted and the error values will be completely 
and randomly different. As a result, the error values will be large 
[23]. 
 The error between the GPS receiver's measurement and the 
location estimate is reflected in the difference between the 
estimated position in the first stage and the actual measurement. 
The presence or absence of a multipath impact may depend on 
this divergence. 
 
Condition-I: If 
 
�� − ������ − 1�  > 0  ⋯ ��� ���� �� ���ℎ� ��������� 

Then 

�(���) = ��� + ���              

Condition-II: If 

�� − ������ − 1�   < 0  ⋯  ���� �� ���ℎ� ��������� 

Then 



  

18 

 

���
�(�) = ��

�(�)                                                         (19) 

III. RESULTS AND DISCUSSION 
MATLAB has been used for the proposed model simulation. In a 
2 min sampling period, 100 samples have been considered. The 
velocity of the moving object is 4m/s. The data is obtained at 
three known receiving stations, and it is shown in Table II.  

 
 

TABLE II 
PARAMETERS OF MOVING OBJECT DATA RECEIVED FROM GPS SENSOR  

 
 

The plot is oriented such that the starting point of the journey is 
located at the origin (0, 0) (Fig. 4). As the object moves toward the 
West, its position is represented by a negative value on the x-axis. 
Similarly, as the object moves toward the South, its position is 
represented by a negative value on the y-axis. This convention of 
using negative values to represent movement toward the West and 
South is commonly used in Cartesian coordinate systems. It allows 
us to represent the position of an object relative to a fixed point, 
such as the starting point of a journey, and to easily visualize its 
movement in different directions. Here it may be important to note 
that the starting position of the object has some drift from the (0,0) 
position due to a conversion error from a spherical to 2D Cartesian 
system. 

 

 

FIGURE 4: Real-time Cartesian plot of moving object tracking. 

 At 1150 seconds, the object is nearly in a stopped condition, 
which causes a glitch in the reading. However, the Kalman filter 
value follows the actual readings, which indicates that the filter 
is effectively smoothing out the noise and improving the accuracy 
of the measurements. 

The error in the velocity reading is approximately 1.765 m/s. 
This error represents the difference between the measured velocity 
and the true velocity of the object. The Kalman filter is designed to 
estimate the true value of the velocity based on the noisy 
measurements and the mathematical model as Equations (9) and 
(10) used to describe the movement of the object and velocity  
error between measured and true velocity as shown in Fig. 5. 

FIGURE 5. Velocity Error. 

 
The actual travel of the object is in the west direction and its 

Kalman filter estimate and estimation error concerning velocity is 
shown in Fig. 5. 
 

 
FIGURE 6.  Position estimation. 

Data 
Recording 
Time 

Latitude Longitude Altitude Speed Course hacc 

06:42:41.000' 24.92848 67.15408 36.2 8.514 315.27 2.2 

06:42:42.000' 24.92854 67.15402 36.2 8.902 317.76 2.1 

06:42:43.000' 24.9286 67.15396 36.3 8.973 317.55 2 

06:42:44.000' 24.92866 67.15389 36.4 8.971 314.66 1.9 

06:42:45.000' 24.92872 67.15383 36.6 8.911 313.14 1.9 
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Fig. 6 illuminates the use of the Kalman filter as (18), which 
distant the NLOS error. The solid line and dashed pattern 
represent the actual position and Kalman estimation position 
respectively. 
 

 
FIGURE 7. NLOS mitigation using Kalman filter. 

 
Fig. 7 shows the mitigation of NLOS error by applying the 

Kalman filter algorithm to increase the estimation. It can be 
observed that the filter enhanced the accuracy. 

 
TABLE III 

WITHOUT KALMAN FILTER ERROR STATISTICS 

Environments 
Distance  

(m) 

Standard 
deviation Error 

(m) 
Mean Error (m) 

- A1 (Open Area)   

- B1(High Buildings)  

- A2 (Open Area)  

- B2 (High Buildings)  

1000 

200 

300 

200 

 

1.32 

17.71 

4.11 

21.20 

 

2.23 

28.40 

9.23 

24.02 

 
Table III and Table IV, provide a comparative result of the GPS 

techniques. In Table III, the state-of-art positioning techniques 
were utilized without the Kalman Filter while in Table IV the 
Kalman Filter was applied to the same positioning techniques. The 
control variables in both scenarios are the environments that the 
object passes through. A1 represents the first open area where the 
signal is received unhindered. This allows us to set a baseline for 
clean data without any noise carrying over from any previous 
environment. B1, on the other hand, is the first time the object 
passes through a region of high buildings that distort the signal and 
introduce noise. A2 is the second open area region where the 
algorithm is given some time to return to baseline and get rid of the 
noise developed in B1. The real testimonial of positioning 
techniques is however illuminated in B2 when the object returns to 

a high-building region. This is because, in this region, the algorithm 
must deal with not only the newly developed noise from NLOS but 
also the previously carried-over noisy data from B1. As a result, 
this means that the better a technique can return to baseline in A2, 
the better it will perform in B2 as it will have to deal with less noise. 

In Table III, the positioning techniques are utilized without using 
the Kalman Filter meanwhile in Table IV, the Kalman Filter is 
applied as a post-processing measure. It can be noted that the 
standard deviation and the mean error are drastically higher in 
high-building regions in the presence of the multipath effect. 
Additionally, the Kalman Filter technique is better equipped at 
returning to baseline in open areas such as A2. This allows it to 
deal better with high-building regions such as B2. In Table II, the 
mean error and standard deviation error are significantly higher in 
the B2 region which can be attributed to the inability of the position 
techniques to get rid of the noise developed in B1 while they were 
in A2. As a result, as soon as the object entered the second area of 
high buildings, the positioning techniques that have recursive 
learning models reintroduced the noise back into the data leading 
to even higher noise.  

In contrast, Kalman Filter was able to clean the data better in A2 
thus allowing the model to return to a better baseline. Due to this, 
when the object entered B2 environment, the mean and standard 
deviations did not increase to the pre-Kalman Filter levels. 
Although, a dramatic increase can be observed the overall 
performance is better which indicates an improved overall 
positioning model. 

TABLE IV 
WITH KALMAN FILTER ERROR STATISTICS FOR THE POSITION ESTIMATION  

Environments 
Distance 

(m) 

Standard 
deviation 
Error (m) 

Mean Error 
(m) 

- A1 (Open Area)   

- B1(High Buildings)  

- A2 (Open Area)  

- B2 (High Buildings)  

1000 

200 

300 

200 

 

1.12 

7.41 

3.54 

17.23 

 

2.01 

15.13 

9.13 

13.02 

 

IV. CONCLUSIONS 
The objective of research work is to identify the location of 
moving objects with maximum accuracy. This research work has 
measured the position and velocity of moving objects with the 
help of a GPS receiver. It was observed that due to the presence 
of noise and NLOS conditions, there is a drift in the measured 
value concerning actual values. To minimize this variation, the 
measurement of GPS has been pre-processed and passed through 
the Kalman filter. 
Kalman filter has processed this measurement and reduced the 
noise error, the reduction of noise in the east and north is 28.64% 
and 34.4% respectively, and 1.765 m/s velocity error concerning 
the original value.  

The Kalman filter has applied to the GPS measurements to 
estimate the true state of the moving object, which was its position 
and velocity. By considering the uncertainty in the measurements 
and the dynamics of the system, the Kalman filter reduces the noise 
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error and improves the accuracy of the estimates, and mitigates the 
NLOS conditions. The reduction in noise and error translates to 
improved reliability and safety in such systems. This research work 
highlights the potential of this approach in enhancing the required 
precise positioning and navigation. However, the accuracy of the 
filter's estimates is reliant on the quality of the measurements and 
the accuracy of the model, which should be taken into 
consideration when implementing this approach. 

V.   FUTURE WORK 
The work done in this research can be extended in many ways. 
The simulation results show that the TDOA technique is eligible 
for the position estimation solution. The statistical parameters 
that are set up for various environmental situations are a major 
factor in the correction algorithms. When more than one position 
locating method is employed to locate the mobile units, such as 
the combination of the AOA and TDOA methods, the research of 
various information-combining techniques may be another 
direction for advancement. In such hybrid systems, the overall 
position location solution must be able to incorporate the data 
from both approaches in a way that prevents the inaccuracies in 
the results from both ways from adding to one another and 
negatively impacting the overall position estimation solution. The 
combined location estimation fix that results from this should be 
more precise than the fixes from the individual two-solution 
approaches. Only one base station may occasionally be able to 
pick up the mobile signal in certain circumstances. Combining 
AOA and TOA procedures is one of the options suggested for 
such circumstances. The TDOA approach, however, may be used 
in situations where installing antenna arrays is not essential by 
using receivers in the cell just to obtain signal snapshots. In 
addition to the base station receiver itself, at least two other 
receivers are required for the TDOA approaches. Using the 
suggested method in the real world appears to be a promising 
possibility. However, several issues need to be addressed. 
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