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Abstract: The human knee plays a vital role in performing day-to-day activities. For a healthy person, it is easy to perform locomotion activities, 
but for people with transfemoral amputation, it is a very difficult task. To overcome this issue, prosthetic knees are developed. These prosthetic 
knees provide the necessary function of the gait cycle. In order to mimic the gait cycle of the human knee, it is crucial to detect different phases 
in the gait cycle. Mechanical sensors such as force and angle sensors are used to collect kinematic data, and then with a heuristic rule base system, 
the gait phases are detected. The rule-based system performs well, but as the number of gait phases increases, it is difficult to identify them. This 
paper proposed machine learning-based gait phase detection. Decision trees, linear discriminant analysis, and support vector machines are applied 
to the kinematics data obtained from strain gauges and angle encoders. These algorithms are easy to implement on embedded hardware as they 
use low computational power. The Linear Discriminant analysis has the highest validation accuracy of 95.6% and test accuracy of 95.40%, while 
both the Support Vector Machine and Decision Trees algorithm have 95.2% validation accuracy. The test accuracy of the Support Vector Machine 
is 95.10%, and for the Decision Tree, it is 95.05%. 
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1. Introduction  
The main function of a prosthetic knee is to provide comfort 
and restore mobility for lower-limb amputees. The crucial 
aspect of these prosthetic knees is to actively recognize phases 
of the gait cycle. This detection further determines how the 
knee will behave during walking and different activities that 
involve knee movement. At present, the most common and 
well-known technique to detect the gait phase is a rule-based 
system, in which different rules are devised based on subject 
knowledge. For this purpose, different threshold levels are set 
to identify gait phases. However, this approach is limited and 
can impact prosthetic performance, comfort, and stability. The 
main motivation behind this study is to provide an alternative 
and more robust solution to this problem. This research 
provides an intelligent approach to mitigate the issue of 
identifying complex patterns, such as machine learning. This 
study provides a comprehensive overview of the 
implementation of machine learning techniques on real 
amputee data. 

Amputation is a tragic occurrence that affects millions of 
individuals worldwide. It involves surgical limb removal. 
According to statistics, congenital limb defects, illnesses, and 
trauma are the three main causes of amputation in that order of 
incidence. There are two main categories of amputation: upper 
and lower limbs. These are further divided into transfemoral, 
transradial, Transcarpal, and complete disarticulation of knee, 
ankle, foot, and shoulder. Since many nations do not keep track 
of the number of persons who have had limbs amputated, it is 

impossible to determine the precise number of amputations 
that have occurred globally. According to figures from 2017, 
there are 35.3 million lower limb amputees worldwide, totaling 
57.7 million amputees [1].  

Since both the knee and the ankle joint are lost during a 
transfemoral amputation, moving around becomes quite 
challenging [2]. The human knee is essential to maintaining 
human life. It is in charge of carrying out everyday tasks. The 
most frequent and necessary daily exercise is walking. It is a 
complicated procedure that combines the capabilities of 
several muscles and tendons. People may transfer their bodies 
from one location to another and retain their equilibrium 
thanks to this optimal construction. Walking is a simple 
process for healthy people, but for people having an 
amputation, it is very tough and difficult. 

Prosthetic knees are designed to address this problem. Three 
categories—Active, Semi-active, and Passive—are used to 
describe prosthetic knees. The passive prosthetic knee has a 
straightforward mechanism and no microprocessor or actuator. 
Due to the fixed damping it offers, the gait cycle is improper. 
The Active and Semi-active prosthetic knees are 
microprocessor-based prosthetic knees that use electric motors 
and dampers to offer variable damping. The Active Prosthetic 
Knee produces both positive and negative energy while a 
person is moving, therefore it uses a lot of electricity, which 
makes it pricey and has a short lifespan. Semi active prosthetic 
knees, on the other hand, have dampers that dissipate energy 
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and use less electricity. Prosthetic knees that are both active 
and semi-active offer more benefits than inactive knees [3].  

Detecting the gait cycle is the most important component of 
prosthetic knees. The human gait cycle is periodic; it starts 
from the heel strike (HS) and completes the cycle, then repeats 
itself [4]. The gait cycle has two major phases: Stance and 
Swing. Stance makes up around 60% of a gait cycle. The 
stance phase occurs when the foot is in contact with the 
ground. The swing phase, which begins when one foot leaves 
the ground and lasts until it strikes the ground again, makes up 
around 40% of the remaining gait cycle. The HS shows the 
start of stance phase, while toe off (TO) shows the start of the 
swing phase. A typical walking cycle has  two supports for 
single limbs and two supports for double limbs. When only one 
foot is on the ground it is called single support and when feet 
of both legs are in contact with the ground then it is called 
double support [5].  

There are several sub-phases within the gait phase. 
Although the number of gait phases employed by different 
writers varied, we have grouped the gait phases into 5 sub-
phases in this work. Two for the swing and three for the stance. 
Initial stance/foot contact, flat foot, heel off, initial and 
terminal swing are the sub phases. Regarding the basic 
principles of gait, a gait cycle starts with heel strikes and ends 
with heel strike. 

One foot's heel touches the ground during the initial phase. 
On this foot, the burden will soon be transmitted. After heel 
strike, the body weight is supported entirely by one foot in the 
second phase of the stance, known as flat foot or mid stance. 
The third stage is heel off, in which the toes are in contact to 
the ground and while the heel is not. Stability is necessary for 
all stance stages. 60% of the gait cycle is made up of the initial 
stance, the flat foot, and the heel off. Toe off initiates the initial 
swing phase. The heel is in air, and the toe is about to enter the 
air during this phase. Mid stance is also called single support 
because the whole body weight is on single foot. The opening 
swing lasts until the mid-swing, at which point the terminal 
stance starts. It continues until the heel strike, at which point 
the subsequent cycle begins. Each swing phase accounts for 
20% of the gait cycle. Fig. 1 depicts the gait phases. 

 
Figure 1. Gait phases in gait cycle. 

Nearly all studies employed the data of healthy volunteers 
for the detection of the gait phase. There is a difference 
between data on sound leg and amputated leg. The sound leg 
data is used to validate the prosthetic knee. Measurements 

based on IMU signals, IMU and force sensor combinations and 
EMG signals are utilized to determine gait phases. 
Mo et al. [6] proposed a method for identifying HC (heel 
contact) and TO occurrences that employed three IMUs 
mounted on the foot, shank, and pelvis to assess the peaks of 
acceleration impulses from distinct sensor locations. The 
initial contact identification was done by calculating the mean 
absolute difference. 

A method for recognizing transitions between gait phases 
was demonstrated by Gorsic et al. [7]. The algorithm received 
information from two pressure insoles and seven IMUs 
attached to various body segments. The results demonstrated 
extremely accurate identification, with an overall online 
detection rate of 97% over four phases. The detection 
performance was equivalent when employing the HMM 
(hidden Markov model) technique, despite the process being 
less involved without learning dataset and model training. 
Based on deep CNN, in [8] a pressure, gyro, and acceleration 
sensor arrays were used to create a smart insole. With this 
method, the primary categorization scheme for the numerous 
gait characteristics was found in the stance and swing phases. 

By incorporating eight EMG sensors positioned beneath the 
feet of an exoskeleton, Joshi et al. [9] offered an LDA-based 
control system that could recognize eight gait stages. The 
complexity of the signal processing technique was increased 
by the mean value, variance, waveform time, and slope sign 
change. The EMG-based method was less promising because 
of the challenging process for data collection and digital signal 
processing; moisture causes sensitivity issues that gather 
between the skin and sensors, and the positioning of the 
sensors beneath the subject's epidermis. 
There are two types of methods that are frequently used to 
identify the human gait cycle. A heuristic rule basis makes up 
the first, while machine learning makes up the second. 
Thresholds are found through the heuristic rule base system. 
The many types of value rules known as threshold algorithms 
are used to specify certain elements of gait phases or 
occurrences. 

Meng et al. [10] used IMU inputs to calculate the knee and 
tibia angles to detect seven gait phases with the best detection 
result of 100% reliability. Boutaayamoue et al. [11] suggested 
a technique that accurately recognized four events within 10 
ms. For each of the two systems, four sensors were required, 
and they had to be fastened to the leg components. The author 
done validation of gait events by thresholding, indicating 
crucial delays. He combined the heuristics and the zero-
crossing technique, for example, records the delay at an 
average of 100 ms to compute HS (heel strike) and TO. 

One of the most employed techniques for classifying gait 
phases in both offline and online data is machine learning 
(ML) algorithms. Different gait phase identification methods 
have been developed by using CNN, DLNN, NN models, and 
HMM, among other machine-learning approaches. For 
instance, a number of uses for the ML subfield of HMM have 
been proposed. Regardless of whether it is being utilized for 
online or offline detection, this approach reliably detects four 
event stages [12]. 



Vol. 6, No. 3, 2023                                    Pakistan Journal of Engineering and Technology 

46 

Using a uniaxial gyro mounted on foot in order to monitor 
the foot's angular velocity, Mannini et al. [13, 14] used HMM 
to identify the 4 gait phases of initial stance (heel strike), mid 
stance (flat foot), terminal stance (heel off) and initial swing 
(toe off). The author identified the gait phases in real-time. 
Although ML algorithms show promising results as compared 
to threshold data but the study on real time data of prosthetic 
knee is missing. In this study we will apply machine learning 
algorithms on real time data collected from semi active 
prosthetic knee. The kinematic data is collected from 
prosthetic knee and then imported in excel sheet. Further signal 
processing is applied and finally ML algorithms are applied on 
that data. 

2. Methodology 
There are three input parameters that were used in this study: 
Knee angle, Knee angular velocity and Knee force data. This 
kinematics data was obtained from incremental encoder and 
strain gauges mounted on shank of the prosthetic knee. The 
following are the steps applied: 

• Data preparation 
• Noise reduction 
• Implementation of machine learning algorithm 

The labelled data was provided by Advanced Robotics & 
Automation Lab, University of Engineering and Technology 
Peshawar. This sensors data was collected from a 
Magnetorheological damper based semi-active prosthetic 
knee. The raw data contained two variables: knee angle and 
force readings. The knee angular velocity was calculated from 
angle data. The data was smoothened with digital low pass 
filter. After data pre-processing, Statistical features was 
selected and applied. Finally, there were three ML models 
were applied: DT, LDA and SVM. Fig. 2 shows data of knee 
angle, knee angular velocity and knee force. 

3. Feature Selection 
A statistical-based feature selection method was used in this 
study. It involves a relationship of input and output by using 
statistics. There are two kinds of features time and frequency 
domain features. The 4 distinct features in the time domain 
were applied on data. These were Mean, Range, Variance and 
Standard Deviation [15]. 

Mean: this feature can be described as, 

𝑀 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (1) 

Range: it is given by, 
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Variance: VAR is given by, 

𝑉𝐴𝑅 =
1

1 − 𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 (3) 

Standard Deviation: SD is given by, 
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1
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2

𝑁

𝑖=1

 (4) 

 
Figure 2. Semi-active prosthetic knee sensors data. 

Segmentation, feature extraction, and algorithms were 
applied to MATLAB by MathWorks. The first step is data 
segmentation. Segment is data in fixed time slot. This segment 
is then used to estimate signal feature. The segment should not 
be very small because it will lead to bias and variance, and it 
should not be very large as it will lead to high computational 
load and will fail to perform in real-time operation. 
Segmentation was done using a non-overlapping windowing 
technique. There were 50 samples selected for each gait phase. 
From these samples first 5 and last 5 were not selected and 
middle 40 readings were selected as, data in the middle of the 
segment is stable. There were 3 segments (40 samples angle 
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vector, 40 samples angular velocity vector and 40 samples 
force vector). The four features were applied to each segment 
separately and a total of 12 features were obtained (4 from each 
segment). After feature extraction, these 12 features were input 
to machine learning models. 

4. Machine Learning Algorithms 
4.1. Decision Trees (DT) 

The main method used for classification and prediction is 
decision trees. Decision tree learning, which focuses on 
categorization rules that are displayed as decision trees 
inferred from a collection of disordered and irregular cases, is 
a typical inductive technique based on examples. It performs 
top-down recursive attribute comparisons across internal 
decision tree nodes, assesses downstream branches in light of 
multiple node characteristics, and draws a conclusion from the 
decision tree's leaf nodes. The whole tree is governed by a set 
of disjunctive expression rules, and each node, from the root 
to the leaf, is governed by a conjunctive rule [16]. 

4.2. Linear Discriminant Analysis (LDA) 

LDA may be employed to identify various patterns in addition 
to the two categories into which it is frequently used to divide 
them. The LDA assumes that the classes are linearly separable 
results in the production or creation of the multi-LDA function, 
which represents many hyperplanes in the space of feature. If 
there are two classes, the LDA creates a single hyperplane and 
projects the data onto it in a way that minimizes the distance 
between them [17]. 

4.3. Support Vector Machine (SVM) 

It is a technique that can be used to solve both classification 
and regression issues. The SVM algorithm uses a training 
dataset separated into different classes to find a hyperplane that 
provides the greatest margin between the data that belong to 
distinct classes. Hyperplane has the largest margin. SVM only 
uses the objects (samples) on the margin's edges rather than 
dividing them based on variations in class means (known as 
support vectors). The separating hyperplane is supported 
(defined) by the vectors (data points) closest to the margin, 
giving the SVM method its name [18]. 

5. Result and Discussion 
The 3d scatter plots between features extracted from three 
input parameters for 5 distinct gait phases in complete 
gait/locomotion cycle (initial stance, mid stance, terminal 
stance, initial swing, and terminal swing) are shown below. 
With the use of a scatter plot, you can investigate the 
connections between two or three variables for a given 
collection of data. In these graphs the three axes correspond to 
three input parameters. Each feature that Figs. 3 to 6 is 
represented in separate graphs. 

 
Figure 3. Variance. 

 
Figure 4. SD. 

 
Figure 5. Range. 

 
Figure 6. Mean. 
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Statistic and ML Toolbox of MATLAB is used to generate 
classification results. Table 1 shows the model parameters. 

Table 1. Model parameters. 

Model Parameter Value 
SVM Kernel Function 

Kernel Scale 
Box Constraint Level 

Multiclass Method 
Standardized Data 

Linear 
Automatic 

1 
one vs. One 

yes 
LDA Covariance Structure Full 
DT Max Splits  

Split Creation Criterion 
Surrogate Decision Split 

100 
Gini’s Index 

off 
 

Table 2 provides a comprehensive evaluation of three 
machine learning techniques, specifically Support Vector 
Machine (SVM), Linear Discriminant Analysis (LDA), and 
Decision Tree (DT). The study comprises various performance 
metrics, which suggest that LDA exhibits greater performance 
than other methodologies. The LDA model has exceptional 
performance in terms of precision (95.76%), recall (95.58%), 
and F1 Score (95.67%), indicating its robust classification 
capabilities. Additionally, the LDA model demonstrates a 
superior level of validation accuracy (95.60%) and test 
accuracy (95.40%), hence highlighting its consistent and 
accurate performance. The performance of the SVM model is 
noteworthy, as it achieves a high precision rate of 95.70%, a 
recall rate of 95.18%, and an F1 Score of 95.44%. 

Furthermore, it attains a noteworthy validation accuracy of 
95.20% and a test accuracy of 95.10%. Despite displaying 
somewhat lower precision and F1 Score in comparison to LDA 
and SVM, DT still maintains a competitive degree of accuracy. 
More precisely, the achieved results include a precision rate of 
93.73%, a recall rate of 95.18%, and an F1 Score of 94.45%. 
Furthermore, it exhibits exceptional performance with regard 
to validation accuracy, achieving a score of 95.20%, as well as 
test accuracy, with a score of 95.05%. In summary, it can be 
observed that LDA and SVM demonstrate robust classification 
abilities, whilst DT showcases a notable level of accuracy. 

Table 2. Accuracy of algorithms. 

Algorithms Precision Recall F1 
Score 

Validation 
Accuracy 

Test 
Accuracy 

SVM 0.9570 0.9518 0.9544 0.9520 0.9510 
LDA 0.9576 0.9558 0.9567 0.9560 0.9540 
DT 0.9373 0.9518 0.9445 0.9520 0.9505 

 
The model accuracy of all algorithms with their ROC curve 

is shown in the Figures below.  
 

 
Figure 7. LDA. 

 
Figure 8. ROC curve for LDA. 

 
Figure 9. SVM. 
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Figure 10. ROC curve for SVM. 

 
Figure 11. DT. 

 
Figure 12. ROC curve for DT. 

6. Discussion 
In conclusion, this study has successfully investigated a 
significant issue in the field of prosthetic knees, specifically 
focusing on individuals who have experienced amputation of 
the lower leg. The deployment of prosthetic knees plays a 
crucial role in facilitating the rehabilitation of movement and 

functionality for those who have suffered amputation. The 
selection between mechanical and microprocessor-based 
knees significantly impacts the entire quality of life 
encountered by individuals in question. Despite the 
advancements in sensor and actuator systems in 
microprocessor-based knees, accurately identifying the gait 
cycle remains a challenging task. As the complexity of gait 
phases increases, the effectiveness of classic rule-based 
systems in terms of accuracy decreases. The current study has 
achieved significant advancements through the utilization of 
machine learning techniques to examine empirical data 
collected from individuals who have undergone transfemoral 
amputations in real-world situations. 

The application of machine learning methodologies, 
including LDA, SVM and DT, in the examination of knee data 
involving force, angle, and angular velocity, has yielded 
promising results. The performance of the LDA model was 
shown to be superior, with a validation accuracy of 95.6% and 
a test accuracy of 95.40% (see Table 3). The SVM and DT 
algorithms demonstrated notable performance, attaining 
validation accuracies of 95.2% and test accuracies of 95.10% 
and 95.05% correspondingly. The findings of this study 
indicate that the utilization of machine learning has the 
potential to significantly improve the precision of gait phase 
recognition in microprocessor-based prosthetic knees. The 
enhancement in precision possesses the potential to augment 
the overall functioning and performance of prosthetic knees. 

Table 3. Related studies. 

Study Sensors Method Phases/
Events 

Accuracy 

Zhen et al. 
(2019) [19] 

Three 
IMUs 

LSTM-DNN 2  91.8% 

Liu et al. 
(2016) [20] 

Four 
angular 
sensors 

NN 8  94.5% 

Ledoux et 
al. (2018) 

[21] 

One IMU THR, LDA, 
QDA 

2  92% 

Attal et al. 
(2018) [22] 

Pressure Hidden 
Markov Model 

6  83.21% 

Kim et al. 
(2020) [23]  

One IMU Time-
frequency 
Analysis 

2  97% (TO 
running events) 

99% (Other 
events) 

Our 
Research 

Single 
IMU, 

Encoder 
and Force 

Sensor 

SVM, LDA, 
DT 

5  SVM (95.20%) 
LDA (95.60%) 
DT (95.20%) 

7. Future Work 
To ensure the robustness of our machine learning techniques 
across different user profiles, it is imperative to undertake 
additional validation utilizing larger and more diverse datasets 
of amputee gait data in future research attempts. Moreover, the 
examination of deep learning methods and the incorporation of 
these algorithms into prosthetic knee systems possess the 
capability to augment the precision and flexibility of gait phase 
recognition in real-time settings. There is a possibility of 
greatly improving the quality of life for individuals with lower 
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limb amputations by effectively incorporating machine 
learning into microprocessor-based prosthetic knees. This 
integration has the potential to offer enhanced movement that 
is both more natural and useful. 
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