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Abstract: Bone fractures are a critical medical condition requiring a thorough and accurate diagnosis to ensure proper treatment and healing. 
The physical examination of X-ray images by radiologists is time-consuming and subject to human error, indicating the need for an automated 
solution. This study proposes an advanced deep-learning approach to detect and classify bone fractures from X-ray images. This research aims 
to improve detection accuracy and streamline the diagnostic process using cutting-edge computer vision methods. Our approach starts with 
preprocessing the dataset, encompassing image resizing to 50x50 pixels, enhancement, and augmentation to improve diversity. Canny Edge 
detection is used to emphasize structural edges in the augmented dataset. The dataset is classified into training, testing, and validation subsets. A 
Convolutional Neural Network (CNN) automatically extracts deep learning features, obtaining complex patterns that show bone fractures. The 
Gray Level Co-occurrence Matrix (G.L.C.M) is utilized for texture features. These features are arranged to form a comprehensive feature set. 
The principal component analysis (PCA) is applied to this fused feature set to shrink dimensionality while preserving critical information, which 
is then used for fracture prediction. Experiments were conducted using a dataset of 14,718 X-ray images covering various bone fractures. The 
proposed method achieved an incredible classification accuracy of 98%, significantly outperforming traditional diagnostic methods and other 
contemporary models. 
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1. Introduction  
1.1. Background and Motivation 

Bone fractures are one of the most frequent types of injuries, 
which can manifest with a vast range of symptoms; the timely 
and precise diagnosis is essential. Manual review by 
Radiologist of the X-ray images is reliable but often became 
inaccurate because of a poor quality of images, human factors, 
and fractured patterns complexities [1, 2]. An oversight by the 
physician can result in delayed treatment process, the wrong 
treatment offered or can increase the patient’s suffering. 
Computer Aided Diagnosis (CAD) offers a promising solution 
[3]. These methods can enhance radiologists’ capacity and 

help them deliver a quicker and precise diagnosis to enhance 
the patient outcomes.  

CAD systems have become more enhanced in the current 
world using Artificial Intelligence (AI) [4-6]. Artificial 
intelligence is a powerful approach for image analysis, in 
particular, deep learning. AI enabled CAD systems had proven 
their effectiveness better than medical experts in various 
healthcare diagnostics. The integration of machine learning in 
health care has resulted in today’s solutions with a major focus 

on medical images. It is becoming essential to use computers 
in several areas and their use in healthcare makes an incredible 
opportunity in delivering patient care. Subsequently, deep 
learning has been considered one of the most promising 
techniques for the diagnosis of bone fracture from X-ray 
images, however, it has its limitations. The variations in 
fracture types, whether hairline, abraded, or mashed fractures 

complicate generalizability for models [7, 8]. In addition, there 
is a lack of high-quality annotated medical datasets that slow 
down the training process, and after that they hamper the 
performance of these models [9, 10]. Another issue is that deep 
learning model is usually a ‘black box,’ meaning that its output 

cannot be easily explained, which is important when making 
life-changing medical decisions [11, 12].  

Though image analysis and using machine learning 
algorithms are in practice, each has their problem associated 
with it. Most of them rely on manually designed features, 
which cannot effectively represent some of the challenges 
pertaining to different types of fracture instances. This 
methodology also requires the input of skilled personnel hence 
it is not easily achievable. The conventional techniques as well 
also fail to address the variability of brightness and pixelation 
prevalent in X-rays and presence of multiple overlapping 
formations resulting in enhanced chances of errors which 
downplay the suitability of X-rays [13]. Both deep learning 
and other traditional approaches may therefore fail to achieve 
the required degree of accuracy, reliability, and especially 
interpretability when it comes to precise fracture diagnosis. 
The need to develop more comprehensive and effective 
solutions is therefore very evident. To overcome the above-
mentioned limitations, we propose a novel approach that 
integrates concepts of both classical as well as deep learning 
algorithms. By integrating the handcrafted feature extraction 
of traditional methods with the pattern recognition capability 
of deep learning models this approach presents a more 
comprehensive diagnoses approach. This can be put on a well-
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founded basis by emphasizing the significant fracture 
characteristics in classical machine learning, which 
subsequently deep learning can optimize and improve. Such 
combined approaches can enhance the model performance 
considerably, especially when data samples are scarce or 
noisy; classical methods help preprocess data samples and 
extract significant features that must otherwise be learned by 
deep learning models [14, 15]. Furthermore, when these two 
techniques are integrated, there is an improvement in the 
interpretability of the model, hence clinicians can be assured 
of the predictions made by the model. Classical factors provide 
a more direct link between deep learning and the end user as 
they explain the gap in a better way. Therefore, it makes more 
sense to integrate such solutions to obtain higher accuracy, 
reliability, and explainability of the bone fracture detection 
systems that can be effectively used in clinical practice.  

The rest of the paper is organized as follows: Section 2 
focuses on the literature review that provides the reader with 
the findings of state-of-the-art research in this domain. In 
Section 3 we describe the proposed methodology and discuss 
model training procedure. The results of the study are 
presented in section 4, along with a detailed discussion of the 
findings. Finally, section 5, presents the conclusion as well as 
future direction. 

2. Literature Review 
This study explores various advanced techniques for detecting 
fractures in long bones, ribs, and wrists. We have examined 
traditional techniques by highlighting their approaches, 
strengths, and reported outcomes. By identifying research gaps 
and evaluating commonly used metrics, this review aims to 
contribute to the development of improved fracture detection 
systems. 

2.1. Long Bone 

In this study [16], a Dilated Convolutional Feature Pyramid 
Network (D.C.F.P.N) was utilized to detect fractures in 3,842 
x-rays of the thigh. The network achieved an impressive AP 
score of 82.1%. In another study [17], researchers used 3,842 
x-rays of thigh fractures to develop the Parallel Net method for 
identifying fractures. The average accuracy measured by the 
AP50 score was 87.8%. In this research [18], fracture detection 
algorithms were utilized on 2,333 x-ray images of the femur. 
The results showed a Mean score of 68.8% for nine types of 
femoral fractures. The study used a faster RCNN, an anchor-
based model with FPNs of different resolutions and a 
ResNet50 base network. In this article [19], the researchers 
developed a CNN model that utilizes an ensemble technique to 
identify ankle fractures. They used Xception, InceptionV3 and 
ResNet to extract features. The algorithm based on the 
ensemble achieved an accuracy of 81% in distinguishing 
between fractures and healthy individuals. In this study [20], 
the InceptionV3 model was employed to classify X-ray images 
of the proximal femur. The method can accurately differentiate 
between images of healthy femur bones and those with 
fractures. In another research [21], Dense Net was utilized to 
categorize femur fractures, resulting in an accuracy rate of 

89%. In this article [22], D. P. Yadav and Sandeep Rathor 
developed a deep neural network model to differentiate 
between healthy bones and fractures. They utilized flipping 
and shifting images to generate a new photo from the available 
dataset. CNN uses a convolution layer that automatically 
extracts features from the source images to classify features as 
cancerous or healthy bones. Tensor Flow and deep learning 
techniques have been introduced to diagnose long, short, and 
plain bone fractures. To ensure accurate performance, the 
system needs validation on a larger dataset. To avoid 
overfitting, the training dataset was expanded. A 5-fold cross-
validation was conducted on the dataset. The activation 
function ReLU is implemented in each layer. The dense layer 
has been applied with activation functions Adam-ax and 
SoftMax one at a time. In this research [23], fracture 
identification in calcaneus CT images is an emerging study 
area; however, several attempts have been made to use these 
imaging modalities to detect fractures in other bones. Consider 
the research of Anu et al., who used GL-CMs to identify bone 
fractures in x-ray pictures. In this paper [24], Tian T. suggested 
a method of detecting fractures in femur bones by measuring 
the neck-shaft angle of the femur. Mahendran et al. [25], 
proposed a fusion classification approach for automated Tibia 
bone fracture detection in this research. The authors began the 
procedure by performing preprocessing operations including 
binary conversion, edge identification, noise reduction and 
segmentation. Using a straightforward majority voting 
method, they employed three widely used classifiers to 
categorize the outcomes: FFBP Neural Network, SVM, and 
Naive Bayes. This research classifies long bones such as the 
thighbone, femur and tibia. Fractures are then categorized 
based on their kind and the site of incidence [26]. Table 1 
presents a summary of existing techniques on long bones. 

Table 1. Summary of existing SOTA techniques on long-bone. 

Ref Types of 
Images Technique Used No. of 

Images 
Acc 
(%) 

[16] X-Ray DCFPN 3842 82.10 
[17] X-Ray Parallel Net 3842 87.80 
[18] X-Ray Faster R-CNN 2333 71.50 
[19] X-Ray Inceptionv3, Resnet 596 81.00 
[20] X-Ray Inceptionv3 2453 86.00 
[21] X-Ray Dense Net 1347 89.00 
[22] X-Ray DNN 4000 92.44 
[23] CT-Scan GLCM 40 85.00 
[24] X-Ray Gabor 420 91.67 
[25] X-Ray SVM / BPN / NB 1000 94.85 
[26] X-Ray Geometric 100 78.00 

2.2. Rib Bone 

In this study [27], the FracNet model was created to identify 
rib fractures. It consists of encoders and decoders, 3D 
convolution, batch normalization, nonlinearity, and maximum 
pooling. The model was trained using 420 images from the 
RibFrac dataset and tested on a subset of 120 prints. This 
approach's segmentation rate was 71.5%, and its detection 
sensitivity was 92.9% for the validation cohort. This paper 
[28], presents a faster R-CNN method to detect and categorize 
rib-bone fractures into groups automatically. The technique 
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cracks and three objectives: strengthening the model, 
identifying and classifying cracks, and establishing a reliable 
mechanism. The study shows that R-CNN outperforms 
YoloV3 in terms of detection speed and accuracy, with an 
impressive 91.1% accuracy and 86.3% sensitivity. In this 
article [29], researchers conducted a second study with the 
same objectives using cross-modal data to train a CNN model 
for automatically detecting and categorizing rib fractures in 
medical clinics. A faster R-CNN model was used to compile 
CT scans and clinical data, and a result-merging approach was 
used to generate 3D lesion outcomes from 2D inferences. By 
adding clinical data to CT scans, the CNN model could more 
accurately classify fresh, healing, and older fractures than 
when CT pictures were used alone. The CNN model improved 
sensitivity (from 0.77 to 0.95, from 0.61 to 0.89, and from 0.55 
to 0.80) while maintaining accuracy (from 0.87 to 0.91, from 
0.77 to 0.84, and from 0.70 to 0.95).  

This article [30], used preprocessing to reduce the size of a 
rib fracture image to 128*128*333 pixels. Afterward, a 
method known as semantic segmentation was employed to 
pinpoint the specific areas where the ribs were cracked. 
Ultimately, the CT scan images were analyzed using the UNet 
model, which achieved an impressive classification accuracy 
of 88.54%. This research paper [31], accurately classified rib 
fractures with a remarkable 90.2% accuracy rate using a CNN 
model. In this study [32], CT images and deep convolutional 
networks (ConvNet) were used to automatically detect 
fractures in the posterior elements of the spine. It should be 
noted that these methods only see bone fractures in medical 
images of a specific bone. In [33], Uysal et al. conducted 26 
deep learning-based classification methods to identify the type 
of shoulder bone fracture depicted in musculoskeletal 
radiograph (MURA) dataset x-ray images. They also created 
two ensemble learning models to enhance the accuracy of the 
classification outcomes.  

In this study [34], Beyaz et al. conducted a fracture 
classification study on 1,341 femoral neck X-ray images using 
a CNN model and genetic algorithm (GA). The study achieved 
an accuracy of 79.3%. In this article [35], Tobler and their team 
utilized the ResNet18 model to classify fractures in a 15,775 
frontal and lateral radiograph dataset. Their results showed an 
impressive accuracy rate of 94%. In this paper [36], Chen et 
al. utilized the ResNet model which accomplished an accuracy 
rate of  73.59% in detecting vertebral fractures among a dataset 
of 1,306 plain frontal radiographs. Table 2 presents a summary 
of existing techniques on rib bones. 

2.3. Wrist Bone 

In this study [37], the Yolo 4 model was utilized to pinpoint 
the exact location of a bone fracture. Additionally, the 
researchers employed a data augmentation technique and 
evaluated the performance of their models using both the 
original and improved datasets. The method achieved an 
accuracy of 81.94%, effectively distinguishing between 
damaged and healthy sections within a single dataset. 
 
 

Table 2. Summary of existing SOTA techniques on Rib bone. 

Ref Types of 
Images Technique Used No. of 

Images 
Acc 
(%) 

[27] X-Ray FracNet 7,473 71.50 
[28] CT Image Faster R-CNN 25054 91.10 

[29] CT Image CNN, Faster R-
CNN 894 88.00 

78.00 
[30] CT Image U-Net CNN 720 88.54 
[31] CT Image CNN 511 90.20 

[32] CT Image Convnet Random 
Subset 85.70 

[33] X-Ray Densenet169 8942 88.03 
[34] X-Ray Genetic Algorithm 1341 79.30 
[35] Radiograph Resnet18 15775 94.00 
[36] Radiograph Resnet Model 1306 73.59 
 
This research paper [38], presents a deep CNN ensemble 

model for wrist fracture identification. The method 
successfully distinguishes between healthy and fractured wrist 
bones with an accuracy of 86.39%. In this article [39], the 
researchers utilized 11,112 images of wrist radiographs to train 
the model, and an additional 100 pictures were incorporated, 
comprising 50 fracture images and 50 typical images. The 
diagnostic sensitivity, selectivity, and AUC values were 
determined to be 88%, 90%, and 0.954%, respectively.  

In this research [40], a convolutional neural model was 
developed using 135,409 radiographs to detect wrist fractures. 
The doctor’s ability to interpret images improved from 88% to 

94% with the aid of the model, resulting in a 53% reduction in 
misinterpretations. In this study [41], they examined 
radiographic images of the hand and wrist to assess a model 
for distal radius fractures. The model was compared to the 
diagnostic accuracy of experienced orthopedic physicians, and 
its efficiency was evaluated. The results showed that the model 
attained a sensitivity of 90% and a specificity of 88%. This 
research [42] aims to develop a system that can automatically 
detect fractures in hand bones using advanced filtering 
techniques to remove noise, edge detection methods to identify 
edges, and Wavelet and Curvelet transforms to extract 
significant features. Additionally, classification algorithms 
like decision trees will determine the fracture type. The system 
will work specifically with X-ray images. Table 3 presents a 
summary of existing techniques on wrist bones. 

 
Table 3. Summary of existing SOTA techniques on wrist bone. 

Ref Types of 
Images Technique Used No. of 

Images 
Acc 
(%) 

[37] X-Ray Yolo4, Faster-RCNN 40,561 81.94 
[38] X-Ray Deep CNN, WFD-C 542 86.39 
[39] Radiograph Inceptionv3 11,112 95.40 
[40] Radiograph CNN 135,409 94.00 
[41] X-Ray VGG16 256,458 88.00 
[42] X-Ray Wavelet / Curvelet 98 91.80 

3. Proposed Methodology 
This section outlines the methodologies proposed for 
automatic bone fraction detection from X-ray images. Fig. 1 
depicts the proposed system's step-by-step procedure. 
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Figure 1. The workflow diagram of the proposed system. 

3.1. Dataset 

The dataset for automatic bone fracture detection using X-ray 
images collected from Kaggle [43], comprises 4,906 images 
categorized into two classes: fracture and non-fracture. To 
enhance the dataset diversity data augmentation techniques 
were applied which also improved the model performance. 
This dataset has been divided into three subsets for training, 
testing, and validation, with the training set containing 12,297 
images, the testing set containing 1,203 images, and the 
validation set containing 1,218 images. Detailed statistics are 
provided in Table 4. 

3.2. Pre-Processing 

Due to the inherent noise, inconsistencies, and incompleteness 
of real-world medical images, preprocessing techniques are 
essential for enhancing data quality. By effectively removing 
artifacts and improving image clarity, preprocessing 
significantly improves the performance of subsequent analysis 
stages, such as feature extraction and classification. Initially, 
images were resized to 50x50 pixels to maintain uniformity 
and improve model training efficiency. For image 
enhancement, we used histogram equalization, making both 
fracture and non-fracture details more distinct. These 
preprocessing steps collectively enhance the accuracy of 
fracture detection and contribute to more reliable diagnostic 
outcomes. Sample images are shown in Fig. 2. 

 
Figure 2. Sample images after preprocessing (a) original image (b) resize (c) 
enhanced image. 

3.3. Image Augmentation 

Starting with 4.906 images across two bone categories 
(fracture and non-fracture), we have applied various 
augmentation techniques it helps to enhance the model 
performance [44]. These techniques involved generating new, 
slightly modified versions of the existing images, expanding 
the dataset to a total of 14,718 images. Methods such as 20% 
shearing, 30% zooming, and horizontal flipping were used 
[45]. Detailed statistics are provided in Table 4, with sample 
images shown in Fig. 3. This augmentation process introduces 
a wider range of image variations, simulating real-world 
conditions where the appearance of fractures may vary. As a 
result, the dataset becomes more robust, and the model's ability 
to generalize to unseen data is significantly improved. 

 
Figure 3. Sample images after augmentation (a) original image (b) horizontal 
flip (c) zoom 30% (d) shear 20%. 

Table 4. Detail of dataset before and after augmentation. 

Sr. No. Classes Original Dataset Augmented Dataset 
1. Training 4099 12,297 
2. Validation 406 1218 
3. Testing 401 1203 

Total 4906 14718 

3.4. Edge Detection Using Canny Edge 

Bone edges are detected from X-ray images using Canny Edge 
[46] which is widely recognized for its accuracy and 
robustness in identifying edges in images. The Canny Edge 
detection algorithm operates in several steps to ensure precise 
edge identification. At first step, to reduce the noise from X-
ray images a gaussian filter applied. This is crucial for 
minimizing false edges that could result from noise artifacts. 
After that the brightness intensity of each pixel is determined 
and the Sobel operators are used to measure any changes in the 
gradient of intensity thus indicating edges. These gradient 
values represent the areas where intensity changes from one 
value to the other with large differences which is possible to 
indicate edges. The next step that the algorithm does is non-
maximum suppression in which case it only preserves the local 
maxima in the gradient direction of the edges.  

This thins the edges to about one pixel wide, which is critical 
if bones edges are to be highlighted and there is also a check 
on thick or blurred edges that may be occasioned by over 
lapping structures or noise. Thirdly, double thresholding is 
conducted in order to identify the strong edges and the weak 
edges. Essentially, strong edge maps which reveal the greatest 
variation of pixel’s intensity are effectively and promptly 

detected as the edges of bone. Only candidates that are linked 
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to strong edges are preserved, thus guaranteeing the produced 
edges are contiguous and robust. The method used here results 
in the precise definition of edges of the bone which is crucial 
for the feature extraction part of the proposed model. Some of 
the sample images when the Canny edge algorithm has been 
applied are shown in Fig. 4. 

 

 
Figure 4. Sample images of canny edge detection results. 

3.5. Feature Extraction 

A hybrid feature extraction technique helps in extracting key 
features from the obtained bone edges. Somewhat more 
complex, patterns within the images are learned in the form of 
deep features that are inherent within a Convolutional Neural 
Network (CNN). However, handcrafted features are extracted 
using Gray-Level Co-Occurrence Matrices (GLCM), which 
describe the texture and structure of the bones. So, by adding 
these two sets of features, a better understanding of the image 
is achieved: improving the efficiency and specificity of the 
classification model. 

3.5.1. Deep Feature Extraction 

Convolutional Neural Network (CNN) architectural design 
starts with the input layer which takes X-ray images as the 
input then follow by three convolution layers which include 
Conv2D-1, Conv2D-2 and Conv2D-3. Every convolutional 
layer uses filters to extract the important aspects of the images 
including edges and textures. In order to speed up the training 
process and make the models more stable, to each 
convolutional layer, Group Normalization layer is added 
which helps to normalize the output. MaxPooling2D layers are 
then used to decrease the size of feature maps and therefore 
decrease the dimension of image. This reduction in 
dimensionality reduces the number of parameters making it 
less likely to overfit in the process. 

3.5.2. Gray-Level Co-Occurrence Matrix (G.L.C.M) 

GLCM [47] is a statistical technique applied for texture 
analysis to define discriminate features from X-ray images for 
bone fracture detection. GLCM gives a true picture of textural 
description of the image by giving a measure of the spatial 
dependency of gray levels. Some of the selected GLCM 

parameters that describe the textural attributes include energy, 
contrast, correlation, homogeneity, and dissimilarity. Energy 
expresses image uniformity where higher its value corresponds 
to domination of specific gray levels and can be calculated by 
Eq. (1). Contrast enhances intensity difference within the 
image and boosts the edges and intricate features and can be 
determined from Eq. (2). Correlation measures the local 
changes of pixel pairs, which is used to understand the relative 
homogeneity of the image and is obtained from Eq. (3). 
Homogeneity measures how close the gray-level co-
occurrences are to the diagonal of the GLCM matrix that 
depicts image smoothness defined by the Eq. (4). Last of all, 
dissimilarity computes for mean intensity difference between 
two pixels and yields the degree of contrast of the images 
computed by the Eq. (5). Thus, the GLCM features directing 
the textural properties of the bone tissue plays a very important 
role in the accurate discrimination of normal and fractured 
bone regions. 

Energy = √∑ ∑ P(i, j)2

N−1

j=0

N−1

i=0

 (1) 

Contrast = ∑ ∑ P(i, j) ∗ (i − j)2

N−1

j=0

N−1

i=0

 (2) 

Correlation = ∑ ∑
(i − µi)(j − µj)

√(σi)(σj)

N−1

j=0

N−1

i=0

 (3) 

Homogeneity = ∑ ∑
P(i, j)

1 + |i − j|

N−1

j=0

N−1

i=0

 (4) 

Here Pi,j = Element (i, j) of the normalized symmetrical GLCM, 
and N = number of gray levels in the X-Ray image, µ =  GLCM 

mean, calculated as µ = √∑ 𝑖𝑃𝑖𝑗
𝑁−1
𝑖,𝑗=0  and σ2 =The variance of 

the intensities of all concerned pixels in the relationships that 
added to the GLCM, calculated as σ2 = ∑ 𝑃𝑖𝑗(𝑖 − µ)2𝑁−1

𝑖,𝑗=0 . 

3.6. Feature Fusion 

The feature fusion phase combines the extracted deep and 
handcrafted features into a single feature vector. This is 
achieved through early fusion, where features are concatenated 
before classification. Deep features, extracted from 
Convolutional Neural Networks (CNNs), capture complex 
patterns, while handcrafted features, such as those derived 
from Gray Level Co-occurrence Matrices (GLCM), offer 
domain-specific information. To harmonize these features, 
normalization is applied before concatenating them into a 
unified feature vector. This integrated representation is 
subsequently fed into PCA for feature reduction, which is then 
fed into a classifier. By combining deep and handcrafted 
features, we aim to leverage the strengths of both approaches 
and improve the overall performance of the fracture detection 
system. 
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3.7. Principal Component Analysis (PCA) 

PCA [48, 49] is employed to reduce the dimensionality of the 
fused feature vector derived from deep and handcrafted feature 
extraction. By projecting the data onto a new subspace defined 
by the principal components, PCA effectively captures the 
most significant variations within the data while discarding 
less informative components. This process not only 
streamlines computational efficiency but also aids in 
mitigating the impact of noise and redundancy present in the 
original feature space. Through eigenvalue decomposition of 
the covariance matrix, PCA identifies orthogonal principal 
components that maximize variance, enabling the projection of 
data onto a lower-dimensional subspace while preserving 
essential information. 

3.8. Classification using CNN 

Following feature fusion and potential dimensionality 
reduction, a classification layer is employed to detect the 
presence or absence of a fracture in X-Ray image. This is 
achieved using fully connected (dense) layers within a neural 
network architecture. The extracted features are flattened into 
a one-dimensional vector suitable for input to dense layers. 
Using activation function (ReLU) these layers introduce non-
linearity and enabling the model to learn complex relationships 
between features and the target variable. In order to minimize 
overfitting, the dropout layers are placed between the dense 
layers, where a certain amount of neurons is removed from the 
computation during the training process. The final dense layer 
employs sigmoid activation function to give a probability 
between 0 and 1 as the chance of a fracture. A decision 
threshold is then applied on this probability to come up with 
binary classification result. 

4. Result And Discussion 
This section gives a detailed discussion on the experiment of 
the proposed hybrid model. Subsequently, a detailed 
explanation of the findings endeavors to further elaborate on 
the consequences that can be derived from them. 

4.1. Performance Evaluation Measure 

Standard performance evaluation measures have been 
employed when measuring the performance of the proposed 
model. Accuracy is a basic assessment of the ability of models 
and is determined by the Eq. (6). Precision, it acknowledges 
how many times the positive class was correctly predicted by 
the model, as it is formulating in Eq. (7). Sensitivity or true 
positive rate (TPR) which is equal to recall can be determined 
using the Eq. (8). Finally, the F1- score, which measures the 
weighted average between precision and recall is computed 
using Eq. (9). Specificity calculates the ability of the proposed 
model to categorically exclude true negatives of each type of 
image using Eq. (10). 
 
 

Accuracy =  
TP + TN

TP + TN + FP + FN
 (6) 

Precision Rate =
TP

TP+FP 
  (7) 

Recall Rate =
Tp

TP + FN
 (8) 

F1 − Score = 2 ∗  
(Precision ∗ Recall)

Precision + Recall 
 (9) 

Specificity =  
TN

TN+FP
  (10) 

The CNN model was trained for 10 epochs, carefully 
balancing the risks of under-fitting and overfitting and 
allowing the loss function to converge properly. The trained 
model achieved a 98% accuracy in identifying fracture and 
non-fracture bone, as illustrated in Fig. 5, with the model's loss 
depicted in Fig. 6. The model also demonstrated a precision of 
98% with an F1 score of 98%, reflecting its high accuracy in 
positive classification. 

 

 
Figure 5. Training and validation accuracy. 

 

Figure 6. Training and validation loss. 



Pakistan Journal of Engineering and Technology                                                                                    Vol. 7, No. 3, 2024 

126 

The model achieved a recall of 98%, effectively identifying 
true positive cases, while its specificity of 100% demonstrated 
its ability to accurately detect fracture and non-fracture bone 
or confirm their absence. The results are presented in Fig. 7. 

 

Figure 7. Results of the classification report. 

Fig. 8 displays the results of our proposed model compared 
to state-of-the-art studies that utilized different learning 
models. In our comparison, we specifically focused on studies 
involving datasets related to bone fractures. Our analysis 
showed that our model addressed a broader range of bone 
fracture classes, and our fine-tuned, pre-trained model 
achieved an impressive accuracy of 98%. Same comparison is 
presented in tabular format using Table 5. 

Figure 8. Accuracy comparison with existing SOTA techniques. 

Table 5. Accuracy Comparison with existing SOTA Techniques. 

Ref Year Technique Acc % 
[36] 2021 DCNN 73.59 
[37] 2021 YOLO 4, FASTER-RCNN 81.94 
[38] 2022 DEEP CNN, WFD-C 86.39 
[50] 2021 DCNN 95.00 
[51] 2022 CNN WITH TL 93.30 
[52] 2022 U-NET NN 96.00 
[53] 2022 CNN WITH GRAD-CAM 90.00 
[54] 2023 LSNET 85.00 
[55] 2023 FASTER R-CNN 88.00 

[56] 2023 DCNN-2, DCNN-LSTM 2 86.54 
88.24 

[57] 2023 AI ALGORITHM 92.00 
[58] 2024 YOLOV4 86.00 
[59] 2024 RESNET-18 94.10 

[60] 2024 RESNET152, VGG19 86.20 
73.20 

PRO -- CNN+GLCM 98.00 
 

The proposed CNN+GLCM model shows a significant 
improvement in accuracy compared to existing state-of-the-art 
techniques. This is because, in medical images like X-rays, 
texture variations are crucial for detecting fractures. GLCM 
effectively captures these texture details, while CNN focuses 
on recognizing patterns and structures. By combining both 
methods, the model becomes more robust and precise, 
overcoming the limitations of CNN alone and leading to better 
fracture detection. 

5. Conclusion and Future Work 
Accurate and timely bone fracture detection is essential for 
optimal patient care. Usually, traditional procedures that rely 
on human expertise are slow and error prone. To overcome 
these challenges, this study recommends a combined approach 
that uses both handcrafted and deep features for better fracture 
identification. A dataset comprising of 14,718 X-ray images 
was selected deliberately to mimic real-life conditions thereby 
enhancing the model’s performance under different settings. 

Preprocessing steps were essential in improving image quality 
by performing noise reduction and normalization. Bone 
structures were outlined by performing edge detection using 
Canny algorithm. Similarly, GLCM analysis was used to 
obtain associated bone microstructure through texture features 
extraction. In order to exploit deep learning capabilities, this 
enhanced dataset was used for fine-tuning a pre-trained CNN 
which allows the model to learn complex feature 
representations and adapt itself for fracture detection task as 
such. A hyperparameter search has been performed to improve 
the accuracy of our models. A significantly high classification 
rate of 98% is reported with the proposed method for fracture 
prediction. The efficiency of the model was thoroughly 
evaluated using precision, recall, specificity, F1-score and 
support measures. Future studies will consider performing 
more experiments on a variety of fractures and their 
complexities will create deeper and stronger fracture detection 
systems. 
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