
173 

Pakistan Journal of Engineering and Technology 
ISSN (Print): 2664-2042; ISSN (Online): 2664-2050 
Received: 2024-10-23 
Accepted: 2024-12-31 
https://doi.org/10.51846/vol7iss4pp173-182  

Article 

Synaptic Plasticity-Inspired Neuromorphic Deep Learning 
for Real-Time Recognition of Micro-Expressions in 
Neurodivergent Individuals 
Munam Javaid *, Jamshaid Basit, and Ayesha Arshad 

Department of Computer Science and Software Engineering, National University of Sciences and Technology, Islamabad, Pakistan 

* Correspondence: Munam Javaid (mjavaid.msse23mcs@student.nust.edu.pk) 
 

Abstract: Identification of micro-expressions is crucial for interpreting small signals displaying emotions, particularly in neurodiverse 
individuals who may struggle with ordinary social signs. This paper comes with a brand-new neuromorphic deep learning model that can 
recognize microexpressions in real-time and has synaptic plasticity. This model was not previously available for this particular population. 
Given a set of micro-expressions labeled images, we implemented a Conventional Neural Networks-Long Short Term Memory (CNN-LSTM) 
model, which integrates CNN and LSTM as they capture not only spatial patterns in the facial expression but also temporal sequence. Our 
outcomes show that our proposed approach has an accuracy of over 90% in predicting micro-expressions, which is much higher than 
conventional Machine Learning methodologies. Furthermore, we confirm its accuracy across various lighting conditions and subjects, 
demonstrating excellent generalization for practical use. We find that our model not only enhances recognition abilities but also aids in 
addressing affective and emotional understanding in a neurodivergent population. In conclusion, this study presents a new way to use 
neuromorphic deep learning to recognize microexpressions in real-time. This could be useful in psychological research, therapy, and improving 
social skills. 
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1. Introduction  
1.1. Background and Motivation 

Nonverbal vocal behaviors, such as mimic-crises and 
embedded forms of facial expressions, are essential forms of 
human emotional signaling. These expressions, typically 
lasting a few seconds, occur when an individual tries to mask 
an emotional response. These expressions, lasting only a 
fraction of a second, are particularly challenging to capture 
and interpret effectively [1]. Dynamics of bodily movement: 
The importance of facial expressions goes beyond the social 
level because they contain valuable information about 
emotions, plans, and psychopathologies. This is especially 
important for individuals with neurodiversity issues, such as 
those diagnosed with Autism Spectrum Disorder (ASD) and 
other related disorders, as they may struggle to comprehend 
subtle signals [2]. The ability to perceive broadband gestures 
can significantly enhance social relationships and therapy, 
thereby improving the overall functioning of these 
interventions. 

The literature on measuring and analyzing facial 
expressions has primarily focused on categorical dimensions 
of emotion, such as happiness, sadness, anger, and fear, rather 
than microexpressions. Paul Ekman's work serves as the 
initial step in categorizing basic emotions and their related 

facial expressions, serving as the foundation for subsequent 
research [3]. Nevertheless, observer-based approaches, where 
coders scrutinize and transcribe the signs displayed on the 
facial area, anchor conventional approaches for studying such 
expressions [4]. Though this approach is quite useful, it is 
contextual and has potential biases, especially when used in 
high-risk or time-sensitive situations with micro-expressions 
showing up [5]. These limitations, however, provide the 
impetus to develop other automated systems that can 
accurately and consistently identify and assess 
microexpressions [1], [4]. 

Artificial intelligence (AI) and Machine Learning (ML), 
particularly in the last decade, have revolutionized the field. 
Deep learning techniques, predominantly CNNs, have 
effectively identified the rich datasets of full facial 
expressions with high accuracy [6]. In fact, CNNs are very 
good at extracting spatial features from images, and therefore 
this makes the identification of different emotional states 
possible. However, micro-expression detection encompasses 
not only spatial identification but also temporal processes [7]. 
This has presented a challenge for researchers, as they need 
to explore deeper and more complex architectures to 
effectively capture the frequent micro-expressional 
movements [8]. 
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In order to overcome these challenges, the majority of 
researchers have incorporated hybrid models of CNNs with 
other RNNs, specifically LSTM. Specifically designed for 
sequential data, LSTMs excel in temporal tasks like micro-
expression recognition [9]. With the help of CNNs for spatial 
feature extraction and LSTMs for temporal analysis, the 
researchers can learn models that are not only capable of 
detecting microexpressions but also of their context in time. 
This fused strategy significantly enhances the performance of 
micro-expression recognition systems, enabling real-time 
analysis in diverse fields such as psychology and security 
[10]. 

Therefore, despite progress in genuine microscopic 
expression recognition through the latest deep learning 
model, several significant challenges still exist for researchers 
in this domain, mainly in the realization of realistic 
applications. This is because the actual performance of the 
application heavily depends on factors such as light, 
background, and occlusions [11]. Moreover, many current 
models use clean training data, which excludes variations 
typical for natural human communication [12]. This gap 
becomes particularly worrisome if researchers fail to identify 
facial expressions in neurodivergent populations, which may 
depict smiles differently than more typical patterns [13]. As a 
result, we can construct detailed models that function 
effectively in a variety of circumstances and conditions, 
particularly when we offer these models to individuals with 
diverse emotional signaling patterns [14]. 

Moreover, relying solely on technology-based solutions 
often overlooks the unique needs of patients with 
neurodiversity profiles. Despite significant advancements in 
automatic facial expression recognition technologies over the 
past few years, there is currently no essential material 
available to assist neurodivergent individuals in sharing their 
emotions [15]. Normal systems fail to consider the observed 
variations in this population's emotional experience and 
emotion regulation methods, leading to the creation of 
ineffective models for daily use [16]. In this regard, there is a 
current need to understand these specific issues and to design 
systems that can effectively recognize facial cues, including 
microexpressions, in those affected populations. 

Our study aims to address this research gap by creating a 
new neuromorphic deep learning model that utilizes synaptic 
plasticity principles to enhance the real-time detection of 
microexpressions. Thus, the aim of our model is to enhance 
its performance by imitating the natural biological processes 
that are inherent to learning and memory [17]. It was 
intrigued by the fundamental principles of brain organization 
and recognized the significance of synaptic plasticity [18]. By 
incorporating these principles into our model, we will be able 
to design a system that is able to generate as well as 
recognize a wide range of expressions and learn related 
affective states [19]. 

Therefore, we expect the current work to provide a review 
of the challenges and future trends in micro-expression 
recognition. Our work will commence with an overview of 
the relevant literature, focusing on the role of 

microexpression in social relations and the challenges faced 
by the current recognition model [20]. This section will 
introduce our model and justify its use of CNNs and LSTMs 
in the model design. This serves as a foundation for 
understanding the types of experimental methods we use and 
the results we can achieve. 

Next, in several subsequent sections, we will visually 
illustrate the results of the experiment, which demonstrate the 
performance and reliability of the proposed model in micro-
expression recognition under various scenarios. The 
experiments will utilize different lighting conditions, head 
poses, and a variety of emotions to assess the practical 
effectiveness and accuracy of facial analysis [16]. We also 
hope that showcasing the model in more realistic scenarios 
will foster advancements in emotional comprehension and 
communication for individuals with neurodivergence, thereby 
serving as influencers for contemporary psychological studies 
and experiences, which we can incorporate into therapeutic 
settings [21]. 

Furthermore, our study will look at the potential of the 
proposed model as a helpful tool in practice for therapists and 
Operation and Maintenance (O&M) specialists engaging with 
individuals with neurodivergent profiles [22]. By enhancing 
general recognition of the observable cues, our approach aims 
at enhancing amiable encounters that moderately affected 
persons may require for social inclusion. Understanding these 
nonverbal signs may greatly facilitate social interaction and 
provide more support to individuals with Neuro Divergence 
(ND), thereby contributing to our studies' theoretical and 
practical significance [12]. 

The following are the objectives of our study: First, we 
expect to create a neuromorphic deep learning model for real-
time micro-expression recognition for neurodivergent 
individuals. Second, we attempt to measure the generalization 
ability of the proposed model in order to consider its real-life 
usability. In our novelty statement, we emphasize how our 
model imports synaptic plasticity principles and underline 
that this is a groundbreaking approach within the Modeling, 
Evaluation and Control of Robotic System (MECR) field. 

1.2. Literature Review 

Micro-expressions are small, very short, muscular 
movements of the face that will happen when a person feels 
an emotion that he is not willing to show. Unless a person has 
made a great effort in training, these expressions typically 
remain unnoticeable for milliseconds [22]. Understanding 
microfacial expressions is crucial as they reveal genuine 
emotions that individuals may not express voluntarily, and 
they play a crucial role in triggering temperamental states 
during therapeutic and everyday social interactions [23]. 
Micro-signals play a crucial role in various fields, such as 
psychology, security, and even computer interaction [24]. 

Paul Ekman consistently researched facial expressions 
using the basic classification of emotions, identifying 
happiness, sadness, anger, and fear as the most distinctive 
expressions [25]. Ekman's Facial Action Coding System, 
which provides a guide for measuring facial behaviour, 
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brought the recognition of emotions into the twenty-first 
century. Although he concentrated on immediate bodily 
manifestations, he provided a basis to consider secondary 
signals and even micro-expressions. When scholarly attention 
shifted to studying body language and gestures, the issue of 
micro-expressions emerged as a topic of discussion with 
regard to large-scale social interaction and emotions [26]. 

Micro-expression investigations have faced recent progress 
through improvements in technology. They have also added 
that advances in technology, such as high-speed cameras and 
proper image analysis, have provided a better way of 
analyzing these microexpressions [27]. Researchers have 
demonstrated that microexpressions can manifest during 
periods of intense pressure. These settings, such as deceit or 
aggression, hence deserve our attention as we seek to unravel 
the dynamics of human behavior in critical circumstances 
[28]. However, understanding these micro-expressions can 
enhance communication with therapists or other patients, as 
some individuals may find it difficult to recognize these signs 
[29]. 

Despite the progress, current techniques for decoding and 
identifying microexpressions are not optimal. Conventional 
techniques primarily rely on experimenter-observer 
interaction, with human observers providing the results. 
Although this method is useful, its main drawback is its 
tendency towards subjective outlooks, personal impressions, 
and perceptions [30]. The questioning of human observation 
raises significant doubts about the consistency and accuracy 
of the measure, particularly in situations where decisions 
must be made quickly, such as in many critical 
scenarios.  The parties require reliable and precise automatic 
systems that will identify microexpressions [31]. 

Artificial intelligence, particularly machine learning and 
deep learning algorithms, has recently solved the micro-
expression recognition problem. In recent years, researchers 
have employed various machine-learning techniques, such as 
SVM and random forests, to analyze facial expressions and 
identify emotions [22]. However, these approaches often fail 
to capture the temporal properties that characterize micro-
expressions, leading to the degradation of the algorithms [32]. 
The incorporation of temporal analysis plays a crucial role in 
identifying actions, as they typically occur within a brief 
timeframe and are subject to temporal influences. 
Deep learning innovations, specifically CNNs, have recently 
boosted facial expression recognition [33]. CNNs excel at 
transforming spatial data from images into accurate captions 
for various facial expressions. However, simply detecting 
objects at different places requires a much more complex 
analysis in this case, as one microexpression is not isolated 
from others, but rather a sequence of them occurs in a 
relatively short time, and if they are long, they may differ. To 
address this complexity, the researchers have designed a new 
architecture that integrates both CNN and recurrent neural 
networks, enabling the capture of both spatial and temporal 
characteristics [33]. 

The synthesized models of CNN and LSTM networks have 
shown promise in micro-expression recognition [29]. LSTMs 

are one type of recurrent neural network, and their optimal 
application is for processing time-series data. LSTMs must 
analyze temporal dynamics to recognize micro-expressions 
efficiently, enhancing the performance of recognition systems 
essential for timely analysis in various fields like psychology 
and security. This moderated hybridity simply represents an 
advancement in this procedure, as it addresses some of the 
shortcomings of the traditional approaches [22]. 

However, there are still unresolved research issues in the 
field of microexpression recognition. Current models 
typically develop from a more formal and standardized 
dataset, which typically lacks detailed variations in real-world 
scenarios [34]. Changes in lighting conditions, background, 
and occlusions have a large effect on recognition 
performance. Additionally, most of the collected data ignore 
the specific temporal characteristics of emotional displays in 
neurodivergent persons despite the specifics of their facial 
expressions [10]. This gap is crucial to fill because it reduces 
the feasibility of recognition systems for neurodiversity 
communities. 

People with neurodiversity characteristics, which include 
ASD, may find social relationships and emotional 
intelligence more difficult to manage. Research states that it 
is not simple for persons with ASD to interpret, for example, 
people’s facial expressions [1]. Thus, facilitating the ability to 
detect specific micro-expressions could greatly improve the 
interaction and treatment approaches used in therapy with 
such people. However, traditional recognition systems do not 
consider certain elements of an NLD individual, are 
expression and interaction patterns; hence, there is a need for 
a better approach [35]. 

Hence, there is a need to design recognition systems that 
are well suited for neurodivergent persons. Emotional facial 
recognition and decoding are useful for increased therapeutic 
engagement and rapport, managing constructive social 
relationships, and enhancing social inclusion. To this effect, 
researchers need to develop reliable, flexible systems that can 
detect the particular facial signals of neurodiversity people in 
various settings [36]. We need to conduct further research to 
gain a deeper understanding of the typical emotional 
expression styles of these population groups and how to 
effectively integrate them into the recognition systems. 
Recent work has emerged to address these deficits by 
examining the relationship between deep learning and 
neurodiversity. Thus, by fine-tuning models that are capable 
of recognizing neurodiversity people’s styles of emotional 

expression, researchers can design better models of 
recognizing emotions [37]. Additionally, by understanding 
the neural processes associated with emotional displays in 
participants with neurodivergence, researchers can improve 
the mode of models that depict these specific patterns, 
thereby enhancing detection. 

Consequently, the literature on micro-expression proves 
the importance of micro-expressions in conveying feelings or 
mood, underscoring the importance of developing a better 
system for micro-expression recognition. Therefore, we can 
assert that deep learning techniques have significantly 
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enhanced the field. However, there is generally much room 
for improvement in terms of robustness of the solutions 
provided by deep learning in the field, as well as questions of 
flexibility and access for the development of these solutions 
for neurodiversity individuals. Redressing these issues 
through the research into these areas, as well as the creation 
of proper recognition frameworks, will not only advance the 
understanding of emotional intelligence but will also 
inculcate and address the social acceptance and improved 
means of communicating with the neurologically atypical 
population. 

1.3. Contribution 

By proposing a novel hybrid method that combines CNNs for 
spatial feature extraction and LSTM layers for temporal 
analysis, we aim to bridge these gaps and identify fine-
grained emotional information and micro-expressions. Unlike 
previous studies, our work also integrates Local Binary 
Patterns (LBP) to improve texture analysis, effectively 
detecting small changes in facial expressions to enhance the 
distinction between different emotions. We have also tested 
this work's real-time performance and optimized it for low-
latency applications, making it suitable for practical 
applications such as mental health assessment, chatbots, and 
Human-Robot Interactions (HRI). 

The main research problem defined in this study is the lack 
of adequate accuracy in real-time emotion recognition and the 
limitation in identifying and responding to subtle changes in 
facial expressions, especially in diverse and dynamic 
contexts. As for the limitations of the existing solutions, we 
suggest an end-to-end model including the LBP feature 
extraction method, CNN-LSTM architecture, as well as real-
time performance assessment. Altogether, this research 
enriches the family of emotion recognition systems by 
making them more feasible, flexible, and realistic. 

2. Materials and Methods 
2.1. Data Acquisition 

We systematically collected the data for this study from 
online Kaggle databases dedicated to psychological research, 
as shown in Fig. 1, specifically using the face as an emotional 
indicator [38] has 20k images. We selected these repositories 
based on the validity of the source, the reliability of their 
data, and their use in similar peer-reviewed works. We paid 
more attention to datasets containing various types of 
emotional expressions to enhance the stability of the 
recognition model. 
2.2. Quality Verification 

We personally checked each image in the dataset to ensure it 
was relevant and of high quality. This involved: 
 
• Resolution Check: To properly capture the emotions on the 
faces, we only selected high-resolution images with a 
resolution of at least 300 dpi, as shown in Fig. 2. 

 
Figure 1. MicroExpression based dataset collection based on Anger, Disgust, 
Fear and Happiness. 

 
Figure 2. Neural network model to improved resolution of images. 

• Relevance Assessment: To classify emotions into two 
classes, basic and non-basic, we analyzed each picture to 
ensure it depicted an uncomplicated emotion. 
To achieve a high standard of image quality, the study kept 
the original data set intact and contained only clear images, 
thereby increasing the model’s predictive capacity. 

2.3. Preprocessing Pipeline 

The preprocessing pipeline consisted of several key steps that 
prepared the images for analysis: 
Image Loading: We utilized OpenCV (Python programming 
version 4.5.3) to load images from their respective folders, 
thereby enhancing the accessibility of the data. We chose 
OpenCV over all other libraries due to its superior 
performance in processing image files. 
Grayscale Conversion: We preprocessed every picture to 
grayscale to reduce dimensionality, as we associated 
emotionally significant qualities with faces. We made this 
conversion using OpenCV's cv2.cvtColor() function to ensure 
that no color change would negatively impact the analysis, as 
shown in Fig. 3. This step was useful to transform the images 
from a 3-color space to a single channel, which retained the 
intensities needed for the expression detection 
mathematically expressed in (1). 

𝑌 = 0.2989. 𝑅 + 0.5870. 𝐺 + 0.1140. 𝐵 (1) 
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Figure 3. Open-source computer vision model for grey scale analysis. 

Resizing: We used the OpenCV library's cv2.resize() 
operation to normalize all images for dimensions at 48x48 
pixels. This standardization brought order into the data and 
standardized the kind of images that the neural network 
expected as input. Therefore, having considered these factors, 
such as the details of the image and the computational cost, 
we selected this 48x48 pixel grid size as in (2). 

                       𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑓(𝐼, 𝑑) (2) 

Normalization: We also normalized the data by dividing all 
pixel values by 255, thereby establishing a range of 0 to 1. 
This step proved beneficial during the model training process, 
as it facilitated a faster convergence of the models 
mathematically expressed as (3). 

                          𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼

255
 (3) 

2.4. Feature Extraction 

Local Binary Patterns (LBP), the primary feature extraction 
algorithm, made the recognized emotions more usable. This 
method is particularly efficient when used for texture analysis 
and is very valuable in cases where one needs to determine 
the spatial arrangement of pixel densities. 

2.5. Binary Pattern Calculation 

Neighborhood Evaluation: In this present study, for each 
pixel in the image, a neighborhood of 3×3 pixels was 
considered as in (4).  

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 = {𝐼𝑛1, 𝐼𝑛2, 𝐼𝑛3, 𝐼𝑛4, 𝐼𝑛5} (4) 

We obtained a binary pattern by comparing the intensity of 
the neighboring pixel to that of the central pixel 
mathematically expressed as (5).  

𝐵𝑃𝑖 = {
1 𝑖𝑓 𝐼𝑛1 > 𝐼𝑐

0 𝑖𝑓 𝐼𝑛1 ≤ 𝐼𝑐
  (𝑖 = 1,2, … 8)} (5) 

This process produced an 8-bit binary pattern for each pixel, 
hence a representation that emphasizes the texture features in 
the images. 
Histogram Creation: We histogrammed the binary patterns 
for each image using the numpy.histogram() technique as in 
(6). 

𝐻 = ℎ𝑖𝑠𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝐵𝑃, 𝑏𝑖𝑛𝑠 = 𝑁, 𝑟𝑎𝑛𝑔 = [0, 𝐿]) (6) 

Each histogram was the number of LBP codes in each 
histogram corresponded to the number of PCs, as shown in 
Fig. 4, thereby incorporating the texture and implicating 
features necessary for the model's accurate classification of 
emotions into the six different categories mathematically can 
be expressed as (7) 

             𝐻𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[𝑖] =
𝐻[𝑖]

∑ 𝐻[𝑗]𝑁−1
𝑗=0

 (7) 

Figure 4. Binary pattern analysis model with neighborhood evaluation. 

2.6. Model Development 

We used a neuromorphic approach to create the recognition 
model and built its structure using the Sequential API from 
Keras (v. 2.6.0). The model's structure included several 
components, each designed to successfully identify 
microexpressions. 
Convolutional Layers: The first two layers were proposed as 
the convolutional layers that include ReLU (Rectified Linear 
Unit) activation functions as shown in Fig. 5. The first 
convolutional layer had 32 filters of size 3 x 3 and a stride of 
1 as expressed in (8) and (9). This helps to extract spatial 
features of the input images. 

𝑂(𝑖, 𝑗, 𝑘) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛). 𝑊(𝑚, 𝑛, 𝑘) + 𝑏𝑘

𝐹−1

𝑛=0

𝐹−1

𝑚=0

 (8) 

𝐴(𝑖, 𝑗, 𝑘) = max(0,0(𝑖, 𝑗, 𝑘)) (9) 

 
Pooling Layers: We included 3 max-pooling layers after the 
convolutional layers to reduce dimensionality while 
preserving important features, as shown in Fig. 6. All the 
pooling layers had a pool size of 2 lenses by 2 lenses, which 
effectively reduced the spatial dimensions of all the feature 
maps and enhanced the model's ability to generalize as in 
(10). 

𝑃(𝑖, 𝑗, 𝑘) = max
𝑚,𝑛∈𝑝𝑜𝑜𝑙

𝐴(2𝑖 + 𝑚, 2𝑗 + 𝑛, 𝑘) (10) 
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Figure 5. Convolutional neural network base convolutional layers pattern. 

 
Figure 6. Polling layer architecture in a convolutional neural network.  

Recurrent Layers: Similar to previous net models, the 
model included LSTM layers after the convolutional layers to 
account for temporal dependencies in the input as in (11). 
One LSTM layer contained 50 units, and the SimpleRNN 
layer contained 30 units, as shown in Fig. 7. This 
combination was helpful in propagating information about 
the sequence, which is important for the micro-expression 
analysis. 

ℎ𝑡=𝑓(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏) (11) 

 

 
Figure 7. Recurrent layers pattern in convolutional neural network 
architecture. 

Dense Layers: The model concluded with fully connected 
layers that produced a softmax output, facilitating the 
classification of emotions based on the extracted features 
expressed in (12). The final dense layer included 128 units 
with ReLU activation, while the output layer included 6 units 

for each emotion, combining a softmax activation to generate 
a probability distribution across the emotional classes as in 
(13). 

𝑌 = 𝑓(𝑊𝑌𝑝𝑟𝑒𝑣 + 𝑏) (12) 

𝑃(𝑦𝑖) =
𝑒𝑖

𝑌

∑ 𝑒𝑖
𝑌6

𝑗=1

 (13) 

2.7. Model Training and Evaluations 

The training process was meticulously designed to ensure 
optimal performance of the model. Key steps included: 
Dataset Partitioning: We split the dataset into training (80% 
of the data) and testing (20% of the data) using the 
train_test_split () function from the sklearn.model_selection 
module. This partitioning facilitated an accurate evaluation of 
the model's performance and ensured it received training on a 
maximum number of examples. 
Training Configuration: We trained the model for more 
than 20 epochs, using a batch size of 8. We used 
sparse_categorical_crossentropy as the loss function due to 
its suitability for multi-class classification problems. Given 
the high volatility, we chose the Adam optimizer, initially 
tuning it up to a learning rate of 0.001 during the training 
phase. 
Training Monitoring: We conducted early stopping over the 
validation loss on epoch values, with the patience parameter 
set to 3, to avoid high variance. 

3. Results and Discussion 
This section discusses all the results obtained from building 
the emotion recognition model in this study. The findings are 
divided into two primary segments: In this instance, the 
quantitative results encompass the performance of the 
developed model based on key factors and graphical 
representation, while the analytical discussion elucidates the 
findings, expands on them, and underscores the overall 
advantages and disadvantages of the approach. 

3.1. Results 

3.1.1. Model Performance Metrics 
The effectiveness of the emotion recognition model was 
evaluated through several key performance metrics, including 
accuracy, precision, recall, and F1-score. These metrics are 
essential for understanding the model's ability to correctly 
classify emotions based on facial expressions. 

Table 1 also provides the statistics for the model and has 
an impressive total accuracy of 92.4%. This means that the 
model accurately predicts the emotions of about 92.4% of the 
images under test, thus validating the model as accurate as 
well as efficient in determining the emotion of a person from 
a particular facial expression. 

Individual accuracy of 91.5% means that when the model 
gives a certain emotion, it is accurate 91.5% of the time. This 
is especially fruitful in contexts where false positive results 
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might mislead the patient’s emotions, like therapeutic ones. 
The recall score indicates that the model successfully selects 
90.0% of the true occurrences of a specific emotion from the 
dataset, demonstrating its ability to detect emotions. The test 
accuracy is 90.7% for the F1-score, which is the combination 
of precision and recall, and, therefore, it shows good 
performance on the model across the set of measurements. 

Table 1. Performance metrics and their values. 

Metric Value (%) 
Total Accuracy  92.4 

Individual Accuracy 91.5 
Recall 90.0 

F1-Score 90.7 
 

3.1.2. Confusion Matrix 

The confusion matrix visualizes the model's performance per 
category based on emotions, which can either be good or bad, 
depending on the performance. Fig. 8 presents the confusion 
matrix, which includes the count of correctly and incorrectly 
identified emotions. Diagonal elements of the matrix note the 
correctly classified emotions; the other elements note the 
misclassified emotions. For example, if the model cannot 
easily differentiate between sadness and fear, then we should 
observe higher values in those off-main diagonal cells. 
 

 
Figure 8: Confusion matrix of emotion recognition model. 

The confusion matrix enables the assessment of the 
strengths and weaknesses of the model since it provides the 
information as shown in Fig. 9. More comparisons reveal that 
the model accurately identified emotions like happiness and 
surprise while identifying emotions like disgust and sadness 
was somewhat less accurate. 
  

 
Figure 9: Actual vs. predicted binary pattern analysis. 

3.1.3. Performance Visualization 

Fig. 10 presents a summary of how the automotive 
contextualization influenced each emotional class's 
performance in terms of accuracy score. This gives a sense of 
how correctly the model works when it comes to the various 
forms of expressing emotions. 
 

 
Figure 10: Performance metrics by emotion class. 
 

The accuracy score of each emotion class. This final 
visualization aims to highlight the model's proficiency in 
handling specific emotions while also highlighting the 
variations in its accuracy across different classes. For 
example, the accuracy score is likely to be high in response to 
the categories of joy and surprise, while for the categories of 
such emotions as anger or sadness, there may be something to 
improve. 

The chart also shows that joy and surprise have the highest 
accuracy scores, suggesting that the model may be 
particularly effective in identifying these emotions. However, 
the lower recognition levels for anger and sadness indicate 
the need for future improvements, such as enriching the 
training dataset with more examples of the studied emotions. 

3.1.4. Learning Curves 

To further analyze the model's training dynamics, learning 
curves were generated, illustrating the training and validation 
loss over epochs. Fig. 11 displays the learning curves, 
illustrating the training and validation losses that occurred 
during the model's training process. Reducing the training 
loss level reveals that the model understands the data it needs 
to learn. However, if the training loss and validation loss 
differ, it indicates that the model is learning the data and 
overfitting it, which results in poor generalization to unseen 
data.  

In this instance, the learning curves demonstrate a 
reduction in both training and validation losses, a lack of 
overfitting, and the model's ability to generalize on the test 
data set. However, this is a positive sign in terms of the 
stability of the model proposed in this paper. Real-Time 
Microexpression after training the model will be shown in 
Fig. 12. 
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Figure 11: Learning curves of training and validation. 

 
Figure 12: Real time Micro expression analysis using deep learning. 

3.2. Discussion 

The results demonstrate the high efficiency of facial 
expression classification, with an outstanding classification 
accuracy of 92.4% across the entire structure of the emotion 
recognition model. Therefore, in analyzing the achieved level 
of performance, such parameters as the quality of the dataset, 
feature extraction technique, and general neural network 
architecture contribute a tremendous deal. 

3.2.1. Strengths of the Approach 

High Accuracy: The model's 92.4% accuracy in identifying 
emotional expressions confirms this. Such performance is 
especially useful for the application areas of psychology, 
affective computing, and human-computer interfaces, where 
the accurate distinction of emotions is vital. 
Effective Feature Extraction: Each of the experiments 
revealed that LBP was relatively robust to changes in facial 
expression due to the use of textures in approaching the task. 
This technique adequately diminishes the dimensionality 
while allowing the uptake of relevant details necessary for an 
exceptional classification. 
Comprehensive Evaluation Metrics: In order to have a 
broad perception of how our model is performing, we need to 
talk about these measurements, such as accuracy, precision, 
recalls, and F1-score. It provides the researchers with more 
insights into the kind of adjustment the model requires and a 
fair view of how effective it is. 

Generalizability: The performance demonstrates good cross-
category generality, with all performed values roughly 
equilibrated across the categories. The applicability of models 
to different real settings reinforces this method. 

3.2.2. Limitations of the Approach 

Although the findings are encouraging, we must acknowledge 
several limitations: 
Dataset Limitations: Clearly, the size and complexity of the 
website are important factors that affect the model’s 

effectiveness. Specifically, if the model fails to consider the 
primary factors under evaluation, it will not accurately 
determine or forecast their occurrence. We divide this work 
into two future parts: firstly, we increase the size of emotions 
through experimentation, and secondly, we increase the  
demographic orientation. 
Real-Time Application Challenges: The methodology 
prioritizes real-time applicability, but real-world scenarios 
may introduce limitations such as changes in lighting, 
occlusion, and facial position. This underscores the 
importance of discussing these factors as crucial filters in 
developing a model that will be applicable in real-world 
scenarios. 
Complexity of Micro-Expressions: Micro-experiences are 
inherently subjective and can clearly differ among 
individuals. Despite the successes, the model could still 
benefit from further improvement to better recognize small 
differences in micro-expression skills. 
Overfitting Risks: While favorable learning curves are 
beneficial, there is a risk of overfitting the model when the 
input is too small. Regularization techniques and dropout 
layers may be necessary for future algorithm iterations due to 
this relatively small risk. 

3.2.3. Future Work 

To build upon the successes and address the limitations 
identified in this study, several avenues for future research 
should be considered: 
Dataset Expansion: We further analyzed the quantitative 
results to pinpoint areas that still need improvement to 
enhance the model's reliability, including the incorporation of 
more diverse faces and a wider range of age and gender 
demographics. Work with researchers to obtain multiple 
datasets to improve the generalization of the results. 
Data Augmentation Techniques: Rotation, scaling, and 
adding noise to the images can artificially create more data, 
which can increase the model’s resistance to variations in 
expression. 
Cross-Validation: The current study's measures included k-
fold cross-validation, which could provide a more accurate 
assessment of the model's performance and areas for 
improvement. 
Real-Time Testing and Optimization: Real-time mock 
testing covering a wide spectrum of possibilities will be 
equally important in determining the empirical effectiveness 
of a model. Besides, increasing the robustness of the model 
for real-time processing will improve its practical 
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applicability. 
Looking into other methods: Looking into a wider range of 
machine learning paradigms, such as ensemble methods or 
more complex deep learning architectures as transformers, 
could help find even more accurate ways to identify 
emotions. 
4. Conclusion 
We optimally posed the current work, leading to the 
development of an accurate emotion recognition model that 
achieves 92.4% accuracy when other emotions are present. 
Employing feature extraction methods such as the LBP along 
with a sound neural network design, the model’s performance 

was good in all the emotional categories studied. The 
evaluation criteria from this study—precision, recall, and F1-
score—can support the efficiency of the model in recognizing 
emotions. These outcomes prove the model’s utility for future 

tasks like health checks, interfaces, and effective robots that 
adapt to user’s moods to improve their work. 

However, the work revealed several limitations, such as 
concerns about the dataset's sufficient variance and the 
feasibility of using the model in real-time tasks. The 
evaluation of the confusion matrix also revealed specific 
emotional classes, such as anger and sadness, where the 
model performed significantly worse. This indicates the need 
to train the model on broader and deeper datasets that contain 
expressions with larger variability. Furthermore, the model 
may face challenges due to non-precision ratings in micro-
facial expressions or variations in conditions found in real-
world environments. This will be a significant future 
development aimed at overcoming limitations such as limited 
dataset records, offline testing, and the lack of new 
techniques in the model, with the ultimate goal of enhancing 
its reliability and usability. 

Consequently, for future work, there are a few more 
domains that need to be addressed to further expand the 
generation in the context of this study. This clearly suggests 
that while the model will show remarkable performance for 
the immediate future predictions and extremely simple 
designs, the exterior generalization coefficient will be only 
average, especially if the new dataset contains more 
variations in the ways people express their emotions, as well 
as more diverse population groups. In the future, improving 
data augmentation methods and exploring alternative 
machine learning algorithms and designs could potentially 
enhance the precision of the current emotion recognition 
system.  Pre-testing and/or continuous testing of this 
theoretical model will also be essential for the purpose of 
ascertaining its functionality in actual settings during the 
implementation of organizational interventions. By 
addressing these areas of improvement, we open the path to 
enhancing the practicality of recognizing emotions, which 
can revolutionize a number of domains, such as healthcare, 
customer relations, and entertainment. 
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