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Abstract: Advanced diagnostic methods are necessary for the early and precise diagnosis of skin cancer, a deadly disease that poses a danger. 
The accuracy of manual skin lesion assessment and visual inspection is limited, which is why sophisticated diagnostic tools are required. In 
response, this study presents a groundbreaking approach that makes use of an ensemble of twelve pre-trained deep learning models, including 
InceptionV3, VGG16, VGG19, Xception, DensNet121, DensNet201, ResNet152V2, MobileNet, MobileNetV2, ConvNeXtLarge, 
NASNetMobile, and InceptionResNetV2. This study demonstrates a distinct training strategy by employing a two-phase approach: first, training 
only the newly added dense layers while maintaining the layers of the base model frozen, and then, fine-tuning the entire model. This sophisticated 
process improves CNN convolutions' stability during feature extraction, which in turn improves the model's overall performance in terms of 
prediction accuracy. The HAM10000 dataset was used as the main basis for training, evaluating, and comparing all of the models used in this 
comprehensive research, assuring a consistent and exacting method to progress the field of skin cancer classification. The model with the highest 
classification accuracy, ResNet152V2, with an F1 score of 98%, wins. By recognizing the intricacy of skin lesions, the study makes the 
significance of its findings clear and provides hope for the development of more advanced diagnostic instruments. This article not only offers a 
critical assessment of current methods but also tackles problems and indicates future directions for future research in the field of medical image 
categorization. This research has implications that extend beyond skin cancer diagnosis; it impacts several therapeutic applications and provides 
a solid foundation for further advancements in the field. 
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1. Introduction  
In the rapidly developing science of computer vision, image 
categorization [1] and detection [2] are at the forefront, 
creating new opportunities and completely changing the way 
we handle visual data [3]. These domains have reached 
previously unheard-of heights thanks to the unrelenting 
advancement of technology, which has made it possible for 
robots to accurately perceive, evaluate, and interpret the visual 
environment [4]. The skin is the body's exterior layer and the 
body's biggest organ. The skin's ectodermal tissues, which may 
have up to seven layers, protect the internal organs, muscles, 
bones, and ligaments underneath. Skin permits the senses of 
touch, cold, and heat in addition to acting as a barrier between 
the human body and the external environment. Skin lesions are 
characterized as patches of skin that are aberrant in relation to 
normal skin. The first and most basic cause of skin lesions is 
skin infection. Skin lesions are separated into two categories 
[5]: the first category, comes with birth or develops over time, 
and the second category, is brought on by improper handling 
of the primary skin lesions and can result in skin cancer. Every 
year, more than three million individuals in the US are 
confirmed to have skin cancer [5]. During the last ten years, 
skin cancer has increased in frequency to rank among the most 

prevalent cancers. [6]. The skin is the biggest organ in the 
human body, so it seems reasonable that skin cancer would be 
the most common kind of cancer overall [7]. Malignant cancer 
and non-malignant cancers of the skin are the two most 
common classifications [8]. Melanoma is a kind of skin cancer 
that is severe, uncommon, and occasionally fatal. Despite its 
higher fatality rate, Melanoma only makes up 1% of all cases 
of skin cancer, according to statistics from the American 
Cancer Society [9]. Melanoma develops in cells called 
melanocytes. Malignant Melanoma develops when normally 
reproducing melanocytes multiply out of control. It is indeed 
possible that this will influence the overall body. All the areas 
exposed to direct sunlight are common sites of development. 
If not diagnosed early, Melanoma and other skin cancers may 
spread to other parts of the body, killing the patient painfully 
over time [10]. Lentigo maligna, acral lentiginous, and nodular 
Melanoma are subtypes of Melanoma [8]. Non-melanoma 
categories including basal cell carcinoma (BCC), squamous 
cell carcinoma (SCC), and sebaceous gland carcinoma, 
encompass most cancer cases. In the middle and upper 
epidermal layers, BCC, SGC, and SCC, respectively, are 
generated. These cancer cells from one part of the body are 
unlikely to spread to another. Non-melanoma cancers are often 
less difficult to treat than melanomas. The National Cancer 
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Institute claims that among all the dangerous malignancies in 
the world, the most prevalent type of cancer, skin cancer, is 
diagnosed with more instances annually in the United States 
than all other cancer types combined. [11]. According to 
statistics, problems from skin cancer result in the deaths of 
more than two people every hour. Predictive data estimate an 
increase in melanoma cases with new diagnoses of 5.8% and a 
decrease in mortality from Melanoma of 4.8% in 2021 [12]. 
Invasive melanoma cases have increased by 44% over the past 
ten years, and it is observed that more than 7000 people died 
from the disease in 2021 [8]. More than 5400 fatalities per 
month are through in-time detection is thus crucial for skin 
cancer treatment [13]. Physicians to find cancer often apply the 
biopsy approach. With this treatment, a physician separates a 
part of a potentially malignant skin lesion for examination. 
This is a tedious and time-consuming process. The manual 
procedures take a lot of time and depend on the operator, which 
might lead to mistakes or incorrect illness diagnoses. The study 
of skin issues is greatly aided by an automatic diagnosis of skin 
cancer, which significantly lowers the expense and effect of 
human detection. It aids in the early diagnosis of skin 
malignancies. A manual skin cancer diagnosis is a tedious, 
time-consuming process, and costly. As AI technologies are 
becoming faster and smarter, it is not surprising that they are 
being used to help identify skin cancer and prescribe therapies 
[14]. This is due to the widespread belief that AI-based 
methods are inexpensive, easy to use, and readily accessible. 
Compared to other diseases, skin cancer diseases have a much 
higher fatality rate. Yet, an early diagnosis could help. Yet, 
many skin malignancies first show no signs. Medical 
specialists highly advise that the examination be carried out at 
a certain age in regions where skin malignancies are 
particularly prevalent. The time and expertise a doctor requires 
to diagnose skin cancer precisely and effectively during a 
physical examination are highly sensitive, and the growing 
number of examination screenings causes the doctor to get 
fatigued and more prone to making mistakes. Having an 
automated AI-based model that serves as a decision support 
system for healthcare is very helpful. Consequently, the 
suggested issue in this research study is the necessity for an 
intelligent computer-aided detection system to identify skin 
cancer early.In recent years, deep learning has significantly 
changed the field of machine learning. It is regarded as the 
most advanced subset of artificial intelligence. The structure 
and operation of the human brain have an impact on these 
algorithms. Several different industries employ deep learning 
techniques, such as bioscience [15], reinforcement learning 
[16], and voice recognition [17]. Comparing deep learning 
systems to other conventional machine learning techniques in 
various domains has yielded good results. Several deep 
learning techniques have surfaced recently and are being used 
for computer-based skin cancer identification, including 
generative adversarial neural networks, convolutional neural 
networks, artificial Neural networks, and Kohonen self-
organizing neural networks (KNN) (GAN). In this study, we 
provide an AI-based method for detecting skin cancer. This 
study aims to explore and analyze a dataset of human skin 

images to investigate skin cancer. A predominant focus was 
placed on the development of an advanced AI-based model 
specifically designed for accurate diagnosis and classification 
of different kinds of skin malignancies was given priority. 
Acknowledging the significance of robustness in the model, 
great care was taken to fine-tune different parameters. 

2. Literature Review 
Skin image analysis is still a developing area since skin cancer 
is such a difficult disease to diagnose. Several researchers 
through the introduction of new methods are always improving 
the performance of image classification. The area is now more 
intriguing and diversified because of technological 
advancements and the advent of new technologies. Esteva et al. 
[18] made the first significant advancement in the 
categorization of skin cancer using a pre-trained Google 
Inception V3 CNN model. In this research, about 129,450 
clinical skin cancer images, including 3,374 dermatoscopic 
images, were used. The resultant accuracy of classification is 
72.1%. On the ISBI 2016 challenge dataset, Yu et al. [19] CNN 
with over 50 layers was constructed in 2016 for the 
classification of malignant melanoma cancer. 85.5% was the 
highest recorded classification accuracy for this study It is 
essential to provide justification for undertaking the proposed 
research, perhaps in the light of previous work done. It should 
be possible in most cases to anticipate the specific and general 
benefits likely to be achieved as a result of the completion of 
the proposed research. In 2018, Haenssle et al. [20] reported 
86.6% sensitivity and specificity for the categorization of 
dermatoscopy melanocytic pictures into a binary diagnostic 
category using a deep convolutional neural network. Dorj et al. 
used deep learning CNN and ECOC SVM to develop a 
multiclass classification in a study [21]. AlexNet Deep 
Learning CNN that had been previously trained, and ECOC 
SVM were used in the classification of multiclass data. The 
average accuracy is stated to be 95.1%.  

In [22], the authors presented a technique to classify skin 
cancers into benign and malignant subtypes. The intended 
system was divided into three phases. In the first stage, lesions 
were extracted from images using a NN that generates its own 
data. Details about the tumor's edges, appearance, and colors 
were fetched in the 2nd stage. Then, an NN ensemble method 
was utilized to categorize cancers. The accuracy of 
categorization is enhanced by an ensemble of NN. The 
outcomes of the suggested classifier were evaluated against the 
results of various classifiers, including support vector 
machines, k-nearest neighbors, random forests, etc. With a 
91.11% accuracy, the recommended model surpassed the other 
classifiers by at least 7.5% in terms of sensitivity. In [23], the 
authors investigated an artificial neural network (ANN). By 
incrementally modifying its connection eights, the ANN 
outperformed the 

KNN in terms of accuracy by cutting down on the error 
between the actual outputs and predicted ones. On the other 
hand, melanoma detection systems are increasingly using deep 
learning. While typical pattern recognition algorithms 
primarily rely on the results of the segmentation stage, deep 
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learning uses a vast number of skin photos to automatically 
recognize the skin lesion and generate a feature map. A method 
for automatically detecting melanoma lesions on skin imaging 
has been suggested in article [24] and is based on the idea of 
deep learning. The findings demonstrate that when utilizing 
CNN with a 15×15 training input size, deep learning is 
effectively able to identify the melanoma lesion. Yet, any kind 
of skin melanoma may be reliably detected using this neural 
network design.  

A hybrid approach for melanoma skin cancer detection has 
been presented in [25] that can be utilized to evaluate any 
unsure lesion. Their recommended solution relies on a 
majority vote to combine the predictions of three separate 
methodologies. The only two rules most systems rely on are 
the ABCD rule and the Blue-Black rule, both of which have 
been shown to have certain limitations and sometimes to be 
ineffective. The ugly duckling was another suggestion made. 
By examining the anatomy of the problematic lesion and 
contrasting it with those of surrounding lesions, the aim was to 
identify an outlier among a background of moles that had 
similar characteristics. Clinical research has shown that this 
clue is a valid factor for cancer detection, but it has not yet 
been investigated in the proposed study's autonomous 
melanoma detection systems. Using hybrid feature extraction, 
skin cancer has been classified as benign or malignant in this 
study [26]. Several criteria, such as the ABCD rule, HOG, etc., 
are used in machine learning techniques to automatically 
recognize skin lesions to extract features and subsequently 
classify. The segmentation of the skin lesion using the GAC 
approach was suggested. For feature extraction, the ABCD 
rule, appearance of the skin lesion GLCM, form, and boundary 
of the skin cancer HOG were recommended for color, 
symmetry, and diameter of the skin lesion.  

Several machines learning methods, including SVM, KNN, 
and Nave Bayes, were proposed to handle the classification. 
Skin lesion imaging from the ISIC dataset was processed using 
the recommended method. When all methods of classification 
are compared, SVM performs better than the others. KNN 
produced results with 85% specificity and 86.2% sensitivity. 
This method can also be applied to the neural network platform 
for increased accuracy. ANN based automated skin lesion 
diagnosis was suggested [27]. To extract features, this 
approach used a wavelet transform. Cancerous and 
noncancerous pictures were identified using the suggested 
ANN model. Besides, ANN- based skin lesion diagnosis 
method was presented by Choudhari [28]. Each image's 
components were identified using maximum entropy 
thresholding. A gray-level co- occurrence matrix was used to 
extract the characteristics of the skin lesions (GLCM). Finally, 
a feed-forward ANN distinguished between skin cancer's 
malignant and benign stages by analyzing the input images. In 
contrast to other works of literature that have already been 
published, the goal of this study is to enhance the early 
diagnosis system of skin cancer by employing readily 
accessible data and applying cutting-edge AI computation and 
algorithms. 

3. Materials and Methodology 
This section explores the thorough resources and techniques 
that support our study. Fig. 1 visually illustrates the 
methodology used for our approach to multiclass classification 
of skin cancer, which involves a series of essential steps. We 
start the procedure by obtaining a publically available dataset 
and then organizing it into a suitable format for further 
processing. We next carry out the required preprocessing 
processes to improve the quality and consistency of the sample 
photos after this data collection and organization phase. In 
order to determine which AI model performs the best among 
the competitors, we next train a variety of AI models using 
preprocessed images as input. The subsequent sections of this 
section provide a detailed analysis of each of these important 
phases, shedding light on the precise 
actions and strategies employed to meet our goals. 
 

 
Figure 1. Proposed methodology. 

3.1. Dataset 

Using the HAM10000 dataset [29], a large collection of 
dermatoscopic images of pigmented lesions, we investigate the 
intricate field of dermatology in this thorough study. This 
dataset provides a solid basis for analyzing the unique 
properties of different skin lesions, enabling a more accurate 
diagnosis that surpasses generalizations and provides an 
exhaustive exploration into the myriad skin problems a patient 
may encounter.It is difficult to train neural networks for the 
automatic identification of pigmented skin lesions due to the 
minimal number and diversity of dermatoscopic image 
datasets. The HAM10000 ("Human against Machine with 
10000 training images") dataset emerges as a game-changing 
way to tackle this problem head-on. The authors have cleverly 
gathered a substantial dataset by carefully collecting 
dermatoscopic images from various demographics and 
capturing them using a variety of modalities. This collection, 
which includes 10,015 dermatoscopic pictures in total, is ideal 
for supporting academic machine learning projects. Each 
image is 600x450 pixels in size and is presented in the widely 
used RGB format, providing a broad canvas for study.The data 
has been carefully organized to include a wide range of 
important diagnostic categories that fall within the group of 
pigmented lesions. These classes span actinic keratoses and 
intraepithelial carcinoma Bowen's disease (akiec), basal cell 
carcinoma (bcc), benign keratosis-like lesions (solar lentigines 
seborrheic keratoses and lichen- planus like keratoses, bkl), 
dermatofibroma (df), Melanoma (mel), melanocytic nevi (nv), 
and vascular lesions (angiomas angiokeratomas, pyogenic 
granulomas, and haemorrhage, vasc). 
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3.2. Exploratory Data Analysis 

Fig. 2 provides an effective visual depiction that highlights the 
significant imbalance found in the dataset. As we examine the 
distribution of the sample images across different classes, this 
startling discrepancy becomes even more obvious. Notably, 
there is a noticeable bias in the composition of the dataset 
owing to the class designated as "Melanocytic Nevi" 
outnumbering the other classes. The fascinating conclusion 
regarding the ground truth annotations in the dataset is 
revealed in Fig. 3. A thorough investigation finds that a 
sizeable majority exceeding the 50% cutoff are rooted in the 
exacting field of histopathology (histo). The strength of the 
dataset's basis is attested to by these thoroughly verified 
examples. The authenticity of the remaining cases, which span 
a wide spectrum and contribute significantly to the dataset's 
inherent depth, comes from sources like follow-up 
examination (follow-up), expert consensus (consensus), and 
even the accuracy of in-vivo confocal microscopy (confocal). 
 

 
Figure 2.  Number of sample images in each class. 

 

Figure 3. Lesion confirmation methods. 

The collection contains a wide variety of lesion images that 
have been systematically collected from diverse anatomical 
areas of the human body, creating an extensive mosaic of 
dermatological samples. Fig. 4 illustrates how this spatial 
distribution spans a broad spectrum and includes prominent 
areas including the back, trunk, face, chest, and many more. 
Due to its geographic diversity, the dataset has a varied fabric 

that is indicative of the rich variability seen in actual clinical 
settings. A captivating examination of the complex interaction 
of age and gender dynamics in the dataset can be seen in Fig. 
5 and Fig. 6, respectively. In this thorough research, 
determining the distribution of sample images among different 
age groups and genders is a crucial step. By giving a clearer 
understanding of the interactions between these significant 
demographic parameters and the occurrence of pigmented skin 
lesions, this in-depth examination promotes a refined 
awareness of the patterns of presentation of these lesions. 
 

 

Figure 4. Localization analysis. 

 
Figure 5: Age analysis. 

 
Figure 6. Gender analysis. 
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This multidimensional study of the dataset's spatial 
distribution, demographic composition, and localization 
idiosyncrasies essentially adds a substantial level of 
complexity. This dataset captures the intricacies of age, 
gender, and anatomical placements, making it an essential 
foundation for comprehensive investigations and in-depth 
study within the complicated subject of pigmented skin lesion 
analysis. 

3.3. Preprocessing 

The well gathered dataset used in this paper was obtained from 
the famous Kaggle platform. The dataset was pre-processed to 
fit in the structure of our model. The first thing to do was 
rescale the lesion photos so that they were in dimension of 
(128, 128, 3). A vital data standardization process that meant 
scaling integers by 255 to establish a homogeneous planet. 
Within the TensorFlow deep learning framework, that is 
acclaimed for its computing strength and advanced 
mathematical constructions, the complicated step of model 
training unfolded. Through a random permutation of the 
dataset, the training set, validation set, and test set effectively 
materialized. This split was carried out while upholding the 
rational randomization concept. Notably, the test set was 
mindfully given 20% of the dataset's size to ensure a strong 
assessment setting, while the training set, making up an 
impressive 80%, provided the optimal setting for the 
development of our neural architecture.  

Looking further into the structure of the training dataset, a 
selective subset—5% to be precise—was chosen for validation 
purposes, promoting experimentation and optimization of 
model parameters. A dataset of 12,018 samples was included in 
the experiments and accuracy, signifying the weighty and 
comprehensive nature of our study's foundation. In keeping 
with the pattern of the training data, a calculated partition 
placed 9,514 samples in the training set's embrace while 501 
samples got into the validation set, leading to the creation of a 
test data reserve with 2,003 skin lesion image samples. This 
created a delicately fostering setting for the development of 
our AI architecture. 

3.4. AI Models 

This study centers on the challenging goal of distinguishing 
and predicting, with an excellent level of accuracy, the 
existence of skin cancer e.g., Melanoma—a disease that stands 
as the deadliest type of skin cancer—using cutting-edge 
developments in Deep Learning Classification models. In 
addition to Melanoma, a variety of alternative malignant 
forms, ranging from melanocytic nevi to a constellation of six 
different kinds, are also attempted to be identified and 
classified. This study creates a significant opportunity for 
comprehensive diagnostic findings. Our goal is to provide 
medical professionals and the research community with a high 
accuracy model for the precise detection and categorization of 
a variety of dermal disorders. This complex purpose highlights 
our dedication to using the strength of cutting-edge Deep 
Learning models to promote a transformational influence on 

dermatological diagnostics, allowing early identification and 
informed decision-making for better patient outcomes. 

In this research, we leverage the power of an ensemble of 
twelve pre-trained models that have been carefully chosen for 
their individual strengths and enhance their current 
architectures to achieve new heights of performance accuracy. 
VGG16, VGG19, InceptionV3, Xception, DensNet121, 
DensNet201, ResNet152V2, MobileNet, MobileNetV2, 
ConvNeXtLarge, NASNetMobile, and InceptionResNetV2 
are the models included in this list. We attempt to push the 
limits of these models through a careful architectural 
refinement process, ensuring that they serve as examples of 
cutting-edge technology in this field of image classification. 
This comparison allowed us to determine that ResNet152V2 
was the top-performing model, with an F1-score of 98% and a 
classification accuracy of 98.95%. 

3.5. Training of AI Models 

The algorithm’s training process was competently divided into 
two distinct phases, each of which was carefully designed to 
result in an extensive structure ready for maximum prediction 
prowess: 

3.5.1. Phase 1 

In this phase, we focused on enhancing the existing 
architecture with new dense layers that were strategically set 
on top of the basic base model. The fundamental principle 
driving this phase was to strictly retain the layers of the basic 
model's immutability. A steady output from the CNN 
convolutions was produced by the strategic constraint in 
training them that served as a pivot. Simultaneously, the newly 
added dense layers were used in categorizing the extracted 
features into their corresponding lesion class. 

3.5.2. Phase 2 

In this phase, the entire model architecture was encapsulated 
by a competent injection of fine-tuning. This phase's sole goal 
was to boost the network's prediction accuracy and bring it to 
the pinnacle of performance. A reduced learning rate is 
employed to avoid making drastic modifications to the feature 
extractors.  

The predictions of the entirely untrained dense layers would 
be nearly random if they were trained from the beginning, i.e., 
skipping Phase 1 and immediately training the whole CNN. 
Due to this randomness, there would be a significant loss that 
would propagate throughout the whole network. The well-
trained feature detectors in the convolutional layers, which had 
previously discovered significant patterns, may become 
disrupted or broken because of this backpropagation. For this 
reason, a two-phase technique is utilized to provide steady 
training while maintaining the caliber of the learned features. 
The overall model architecture is depicted in Fig. 7. 

4. Results 
This section gives a thorough description of the methods used 
to get better results and makes comparisons with comparable 
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areas of research. The subjects cover a range of AI-based 
classification models, in-depth analysis for evaluating metrics, 
and model performance evaluation. Several figures and tables 
are used to show, explain, and augment the findings of these 
comprehensive studies, making it easier to grasp the research's 
conclusions in full. 
 

 
Figure 7. Model Architecture. 

4.1. Modelling Parameters 

With the primary objective of performing a detailed 
comparison study, we carefully implemented each of the 
models in our examination. We enforced these across the 
complete training pipeline by carefully curating a defined, 
matching set of hyper-parameters. More specifically, we 
trained using the Adam optimizer and Sparse Categorical 
Cross-Entropy Loss to improve model performance. We used 
a learning rate of 1e-5. Also, we scheduled our training to 
exploit mini-batch gradient descent with the help of 128-batch  
We extensively trained both models for 50 epochs each so that 
they would have plenty of time to converge and learn because 
the course encourages proper experimentation. We verified 
that we were able to control how well our model performs 
while training since every time a full epoch is completed, the 
performance of the resulting architecture must be assessed on 
the validation set. These are resource-intensive experiments, 
and Kaggle gave us the computational power to process more 
sophisticated models by running them within a managed 
environment. Not only that, the IDE of Kaggle also comes with 
a very huge RAM size at 30 GB and we have free access to 
GPUs such NVIDIA T4. We explain the result of each of these 
models below. 
 
 

4.2. Evaluation Metrics 

With the test and also on original datasets, which have very 
less balanced classes, we took a holistic approach to 
understand our model's performance. We also used the 
weighted average F1-score as evaluation metric, besides 
accuracy and precision. We incorporated confusion matrix, 
Receiver Operating Characteristic Curve (ROC), and Area 
under the Curve (AUC) into our evaluation methods to ensure 
a deep review of each model performance. Let's explain these 
evaluation metrics: 

4.2.1. F1 Score 

We measured our model in terms of its F1- Score, which is the 
balance between precision and recall. Recall differs to 
precision in that the former calculates how many positive cases 
there are within a dataset, while precision is estimating what 
proportion of total sayings really is about high-value 
predictions from algebra-return values. By merging these two 
together and converting them into a single number, F1-score 
gives an unbiased measure of how good our model is at 
correctly classifying positive as well negative examples. The F1 
score is the harmonic mean of precision and recall. 
Mathematically, it is represented as (1) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
Precision ∗ Recall

percision + Recall
 (1) 

4.2.2. Accuracy 

The f1-score is a measure of the accuracy of the model after 
precision and recall have been balanced. Precision measures 
the ratio of actual positive predictions to all other predicted 
positives generated by the model (in contrast to recall, which 
tracks how many real true instances are in the data) Averaging 
these two metrics gives us the value of F1-Score – a balanced 
assessment on how well does your model perform in 
classifying positive samples and negative samples together. 

4.2.3. F1 Score 

F1 Score is the harmonic mean of precision and recall 
Mathematically represented in (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 (2) 

where true positives are represented by TP, true 
negatives by TN, false positives by FP, and false negatives by 
FN. 

4.2.4. Precision 

When comparing all the model's positive predictions, precision 
is the percentage of true positive predictions. It evaluates the 
model's capacity to keep clear of false positive errors. In other 
words, precision assesses how well the model identifies 
Positive data. Equation (3) provides precision: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

4.2.5. Confusion Matrix 

A confusion matrix is a table that offers a detailed explanation 
of the predictions made by a model. Its four values are False 
Positives (FP), False Negatives (FN), True Positives (TP), and 
True Negatives (TN). These figures contribute to a more 
comprehensive comprehension of the model's functionality. 

4.2.6. ROC Curve 

The ROC curve graphically illustrates a model's capacity to 
distinguish between the positive and negative classes at 
various decision thresholds. It displays the true positive rate 
(sensitivity) against the false positive rate (specificity) as the 
decision threshold varies. The ROC curve provides insight into 
how well a model can differentiate between different 
thresholds. 

4.2.7. AUC 

The ROC curve yields a numerical number known as the AUC. 
It measures how well a categorization model performed 
overall. A perfect classifier has an AUC of 1.0, while a random 
classifier has an AUC of 0.5. Better model performance in 
differentiating between positive and negative examples is 
shown by higher AUC values. 

4.3. Performance Evaluation 

As part of our analysis, we looked closely at the performance 
of the model in testing. We considered other critical parameters, 
namely weighted average F1 scores, accuracy, and precision, 
all of which are found in their classification reports in Table 1. 
A key point to mention is that machine learning models should 
not be based solely on accuracy. The weighted average F1-
score gives a fairly complex picture of overall effectiveness, 
balancing recall and precision. For one, these results 
abundantly depict the extraordinary performance of 
ResNet152V2 in this skin cancer classification challenge since 
it reached an impressive 98% classification accuracy and 
F1 score, thus shedding light on its superior capabilities in 
comparison with all the models considered. This high accuracy 
really does credit to its capability to accurately classify skin 
cancer images in a variety of classes showing a very good 
architecture and efficient training of the model. 

Table 1: Performance evaluation of the developed models. 

Model Accuracy Precision F1 score 
VGG16 83.72% 82.76% 82.58% 

InceptionV3 79.38% 77.51% 77.32% 
Xception 87.42% 87.15% 86.49% 

DensNet201 92.36% 92.33% 92.08% 
MobileNet 91.01% 91.1% 90.55% 

MobileNetV2 86.82% 86.69% 85.63% 
ConvNeXtLarge 74.94% 73.93% 69.97% 
NASNetMobile 76.39% 74.16% 72.43% 

InceptionResNetV2 82.33% 81.48% 80.95% 
ResNet152V2 98.95% 98% 98% 

4.4. Confusion Matrix 

All the confusion matrices may be inspected to gather 
significant information. Fig. 8 (A-L) is the confusion matrix 
for all the models. Interestingly, Fig. 8 (L) is the confusion 
matrix for ResNet152V2, which Stand out as the most 
enlightening and illuminating model evaluated the given 
confusion matrix corresponds to the following seven different 
class labels: actinic keratoses, basal cell carcinoma, benign 
keratosis-like lesions, dermatofibroma, melanocytic nevi, 
Melanoma, and vascular lesions. 

 
Correlates with in terms of classification. While looking at the 
confusion matrix of ResNet152V2 in Fig. 8 (L), the diagonal 
values in the matrix are true positives (accurate 
classifications), demonstrating the model's precision for each 
class. Particularly noteworthy is how well ResNet152V2 
performs in accurately classifying Dermatofibroma and 
Melanocytic nevi with no erroneous predictions. Nevertheless, 
there are very few instances of misclassification, such as false 
positives (for example, classifying Melanocytic nevi as Actinic 
keratoses) and false negatives (for example, classifying 
Actinic keratoses as Benign keratosis-like lesions). This 
confusion matrix shows the amount of accurate and wrong 
predictions for each category and offers a thorough analysis of 
how ResNet152V2 outperformed each class. 

 

Figure 8: Confusion matrix of the developed model. 

4.5. ROC & AUC 

In addition to the previously indicated evaluation standards, a 
look at the ROC curves for each model, as shown in Fig. 9 (A) 



Pakistan Journal of Engineering and Technology                                                                                    Vol. 7, No. 4, 2024 

190 

through 9(L), provides important insights into their 
discriminatory skills. Fig. 9 (L) prominently displays the ROC 
curve for ResNet152V2, which stands out as the strongest 
model among those examined. Additionally, the AUC values 
are simply provided by the ROC figures, underlining 
ResNet152V2's outstanding performance and high AUC score. 
Also, A comparison of accuracy with existing studies 
leveraging the HAM10000 dataset is presented in Table 2. 

 

 
Figure 9. ROC of the developed model. 

Table 2: Comparison of accuracy with existing studies leveraging the 
HAM10000 dataset. 

Reference Year Algorithm Accuracy 
Waweruet al.[26] 2020 DCNN 78.0% 

Huo [27] 2021 CNN 75.0% 
Moldovan [28] 2019 Transfer learning 85.0% 

Yildiz Aydin [29] 2023 XGBoost classifier 96% 
Shah [30] 2021 LRNet 90.6% 

Amin Tajerian [31] 2023 EfficientNet 84.3% 
This study 2024 ResNet152V2 98.0% 

5. Conclusion 
This study significantly advances the field of skin cancer 
categorization by utilizing state-of-the-art Deep Learning 
Classification models to tackle the difficult task of precisely 
identifying and predicting seven different types of skin cancer, 
which are among the deadliest types of the disease. We 
improved their performance by carefully optimizing the 
architecture of a specially selected set of twelve pre-trained 
models, which are: VGG16, VGG19, InceptionV3, Xception, 
DensNet121, DensNet201, ResNet152V2, MobileNet, 
MobileNetV2, ConvNeXtLarge, NASNetMobile, and 
InceptionResNetV2. The HAM10000 dataset provided the 
fundamental framework for training, evaluation, and 

comparison of all models used in this extensive study, 
guaranteeing a consistent and exacting method to progress the 
area of skin cancer classification. ResNet152V2's outstanding 
result, featuring an F1 score and an astounding 98% 
classification accuracy, highlights how effective it is in 
correctly classifying images of skin cancer. Nonetheless, it is 
important to recognize certain limitations that are intrinsic to 
this research. Future research including bigger and more 
diverse datasets that cover real-world differences will be 
necessary since the model's generalizability to broader clinical 
settings may be limited due to its dependence on carefully 
selected datasets. Furthermore, the complexity of clinical 
decision-making could not be well captured by an exclusive 
focus on image-based categorization. Future studies may be 
carried out to give priority to the integration of multi-modal 
information, such as clinical data and patient histories to 
improve the model's diagnostic skills in various scenarios. 
Iterative model refining is also necessary due to the continual 
developments in deep learning approaches, which need 
constant adaption. In addition to strengthening the robustness 
and application of skin cancer classification models, 
addressing these limitations and adopting these future 
approaches will also support the continued advancement of 
artificial intelligence in medical diagnostics. The comparative 
analysis, high accuracy, and creative approaches of this work 
serve as a strong basis for future studies that will improve and 
broaden the scope of skin cancer detection systems. 
Interestingly, any image classification domain data with 
classification use cases might be processed using the technique 
suggested in this study. 
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