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Abstract: Unsupervised learning faces an essential data clustering challenge in high dimensions where SpectralNet stands as an effective 
approach which combines deep learning with spectral clustering methods. A performance evaluation of SpectralNet measures its results on 
Fashion MNIST and KMNIST with accuracy as well as computational costs and resource demands under multiple hyperparameter configurations. 
The investigation examines how generalization changes with various distribution scenarios through the assessment of balanced versus unbalanced 
dataset splits. Higher embedding dimension values lead to superior clustering precision, whereas it demands increased processor capacity. The 
research reveals how SpectralNet handles accuracy-efficiency relationships in dataset analysis to demonstrate its practical capabilities for 
complex information. 
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1. Introduction  
1.1. Background and Motivation 

The main function of unsupervised learning in its innovative 
field consists of identifying hidden data structures by utilizing 
clustering techniques. K-means clustering, along with other 
traditional methods [1] struggles to apply to high-dimensional 
databases because they require linear separability for their 
operation [2]. The approach of spectral clustering takes data 
points through graph transformation before using graph 
Laplacian computations for clustering identification. 
SpectralNet extends graph embedding principles through 
neural network frameworks for effective learning of data 
structures which allows the system to scale better when 
processing extensive datasets. The series of Fashion MNIST 
and KMNIST represent distinctive clustering difficulties 
because Fashion MNIST contains clothing patterns and 
KMNIST consists of intricate Japanese characters. The study 
evaluates generalization changes by analyzing dataset split 
imbalances through [3], [4]. 

This study explores different hyperparameter embedding 
dimensions through testing their influence on system precision 
and operational complexity as well as resource usage levels 
[3], [4]. The research focuses on obtaining SpectralNet 
assessment results that cover various operational 
circumstances to create the groundwork for optimizing cluster 
identification in multidimensional environments. SpectralNet 
shapes dataset analysis through accuracy-efficiency 
preferences to show its functionality for analyzing complex 
information. 

1.2. Literature Review 

The clustering algorithms identify different data groups 
through inherent patterns using features that are not defined by 
human choices. The k-means grouping algorithm fails to 
succeed in high-dimensional datasets because Euclidean 
length loses its significance. The spectral clustering approach 
resolves the distance limitations through similarity graph 
construction and Laplacian matrix embedding analysis. 
SpectralNet improves spectral clustering through deep 
learning applications that optimize graph building and support 
big data processing [1], [2]. The algorithm proves effective 
with complex datasets, including Fashion MNIST and 
KMNIST, that serve as common metrics for image 
classification and clustering evaluations [3], [4]. KMNIST 
requires identifying Japanese characters as part of its object 
recognition process which differs from Fashion MNIST 
because it uses apparel images.  

Neural network embeddings helped deep learning improve 
its clustering output, according to recent studies [5]. The 
research shows that high-dimensional dataset work requires 
algorithm performance optimization together with efficiency 
improvement through hyperparameter tuning [6], [7]. The 
performance evaluation of SpectralNet with both balanced and 
unbalanced dataset splits in this research helps identify optimal 
clustering model approaches for practical use as reported by 
[8]. The split of datasets into balanced and unbalanced subsets 
served to evaluate SpectralNet under different distribution 
conditions [3], [4]. The SpectralNet neural network required 
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evaluation on each dataset with multiple parameter settings to 
examine different embedding dimension values [2]. 

The essential requirement is to use models which handle 
both general and local data distribution patterns. The main 
advancement in SpectralNet comes from its capability to 
replicate data spectral embeddings by using neural networks. 
The computation of graph Laplacian eigenvectors in classical 
spectral clustering becomes impossible for large datasets 
because of its cubic time complexity. The method supports 
modern techniques that search for scalable alternatives to 
spectral decomposition methods [9], [10].  

The local neighborhood relationships among data points 
receive benefits from SpectralNet through its inclusion of a 
pairwise similarity matrix. The relationships emerge through 
the application of cosine similarity together with Gaussian 
kernels and k-nearest neighbor graphs as distance metrics. The 
learned spectral embeddings maintain the underlying 
relationships because the network clusters data so that it 
reflects its intrinsic manifold structure. The technique proves 
essential in databases showing non-linear or non-convex class 
boundary formations since this condition usually appears in 
visual applications like image segmentation and document 
clustering [11]. The successful implementation of 
hyperparameter optimization stands crucial for achieving 
superior performance from the algorithm. The performance of 
spectral clustering depends strongly on learning rate along 
with number of epochs and embedding dimensions and 
dropout rate values because these parameters affect both 
convergence speed and generalization performance and system 
resource utilization. Since KMNIST data needs identification 
of delicate Japanese symbols it falls into the linguistic domain. 
Extended limitations occur for clustering models when dealing 
with these domain differences because they need both accurate 
classification and consistent functionality across different 
domains. A comprehensive evaluation of SpectralNet's domain 
generalization capabilities can be achieved by conducting tests 
among different data categories that include Fashion-MNIST 
and KMNIST and CIFAR-100 [4], [12]. 

The process of dimension expansion enhances the detection 
of complex data patterns yet simultaneously increases 
computation expenses and introduces possibility of 
performance degradation. Hyperparameter optimization 
produces benefits that help researchers balance the relationship 
between numeric precision of clusters and training speed along 
with resource consumption [13], [14].  

The study contributes practical knowledge through its 
assessment of balanced versus unbalanced dataset splits. The 
use of balanced datasets ensures meaningful quality 
assessment of clustering methods because they create even 
distributions of classes that mimic perfect clustering scenarios. 
The deep clustering method SpectralNet requires additional 
data treatment approaches alongside regularization techniques 
to function adequately when processing unbalanced data 
according to recent findings in [15], [16]. 

The study adds to the body of knowledge regarding flexible 
clustering methods that do not belong to specific domains in 
modern machine learning systems. Unsupervised learning 

methods show practical value in detecting anomalies and 
providing recommendations because they process complex big 
data sets which suits applications in bioinformatics and IoT 
and recommendation platforms as reported in [17], [18]. 

1.3. Contribution 

The research evaluates SpectralNet algorithm performance 
using Fashion MNIST and KMNIST datasets by adjusting an 
important parameter that influences accuracy levels. This 
research shows how modifications in algorithm execution 
occur across different parameter distributions from precision 
assessments generated through hyperparameter changes. The 
research evaluates model evaluation and 
robustness/generalizability transformations to enable the 
growth of spectral-based learning procedures. 

2. Materials and Methods 
The SpectralNet application to Fashion MNIST and KMNIST 
datasets starts from data import through preprocessing and 
then moves to model training followed by testing and ends in 
evaluation. 

2.1. Dataset 

The Fashion MNIST and KMNIST datasets should be loaded 
since they contain grayscale images intended for classification 
tasks. The analysis requires complete information provided by 
Fashion MNIST.  

2.2. Preprocessing 

The training process needs essential data preparation steps 
which transform raw data into training-ready condition.  

2.3. Load the Dataset 

The dimensions for images must be adjusted to a standard 
form. The process converts images into vector-form so that 
they become compatible with neural network usage. 
Caretakers can normalize pixels because the range should be 
between 0 and 1.  

2.4. Extract Labels for Evaluation Purposes 

The normalization process should be applied together with 
split generation at ratios from 25% to 100% in 25% 
increments. Testing performance across different data 
distributions requires training and testing splits with ratios of 
50/50, 60/40, 70/30 and 80/20 and 90/10.  

2.5. Model Training 

The SpectralNet model receives training through different 
stages. Neural Network Training serves as a method to obtain 
the embeddings. The dataset experiences Dimensionality 
Reduction that transforms it into lower-dimensional space. The 
clustering process under Unsupervised Learning functions 
without requiring any labeled data.  

2.6. Optimization to Refine Model Performance 

The model receives Hyperparameter Tuning that allows 
adjustments of learning rate values and embedding dimension 
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values. Operate the Self-Organizing Maps (SOM) alongside 
Spectral Clustering techniques during implementation. A K-
means clustering procedure should operate on dimensions that 
were reduced beforehand. Use matrices to perform eigenvalue 
decomposition of Laplacian matrices for achieving optimal 
clustering results. 

2.7.  Testing 

The trained model should be used for testing unseen data to 
determine its generalization abilities. The model receives 
newly introduced data to classify items through its acquired 
features. 

2.8.  Evaluation 

The model performance assessment should utilize these 
evaluation metrics: Confusion Matrix: 

• Precision  
• Recall  
• F1 Score  
• Accuracy  
• Memory Usage  

The methodology conducts a systematic evaluation of 
SpectralNet through data split tests and hyperparameter 
adjustments which show its ability to classify both Fashion 
MNIST and KMNIST high-dimensional image datasets. 

Fig. 1 shows in detail how SpectralNet operates to analyze 
classification outcomes by processing Fashion MNIST and 
KMNIST datasets. The algorithm starts with importing both 
datasets which leads to building a full Fashion MNIST 
database. The dataset together with KMNIST receives 
preprocessing treatment that consists of normalization steps 
and class distribution balancing/unbalancing procedures using 
defined sample partitioning methods. The preprocessed data 
goes through the training model by completing essential 
operations for dataset loading while preparing input and output 
alongside normalization and missing value handling and label 
encoding. 
 

 
Figure 1. Methodology diagram. 

The training method combines steps for neural network 
learning with unsupervised methods, clustering techniques and 
hyperparameter optimization. SOM together with Spectral 
Clustering joins forces in this system for improved clustering 
operations through the combination of dimensionality 
reduction and k-means clustering and Laplacian matrices and 
eigenvalue decomposition methods. 

After training concludes, the model advances into the testing 
mode to classify different input data using the acquired 
knowledge base. After classifying the data, the system 
undergoes complete evaluation using precision, recall, F1 
score, accuracy and confusion matrix metrics and memory 
usage evaluation. The entire framework provides an organized 
process to evaluate SpectralNet's ability to categorize 
handwritten character information sourced from various 
origins using multiple hyperparameters. 

3. Experiments 
3.1.  Configuration and Tools 

The code was run on a PC with an operating system of 
Windows 10 home single language, with an Intel(R) Core 
(TM) i5-6300U CPU @ 2.40GHz, 8GB RAM and 512 GB 
SSD storage. This environment was set with Python 3.8 and 
the TensorFlow framework 2.6, other libraries are NumPy and 
Matplotlib. The Fashion MNIST dataset is available on the 
TensorFlow/Kera’s dataset repository or through the provided 
GitHub link. 

3.2.  Balanced and Imbalanced Dataset Instances 

Each class contains equal numbers of instances when the 
distribution remains balanced in the design as per shown in 
Table 1. A truly unbalanced setup preserves all instances yet 
specific classes possess substantially greater numbers of 
instances than others do. SpectralNet adopts clustering 
algorithms to tackle conditional imbalance while upholding 
the performance system found in unsupervised learning 
structures. 

Table 1. Balanced and unbalanced dataset. 

Dataset Total 
Classes 

Balanced 
Instances 
per Class 

Total 
Balanced 
Instances 

Unbalanced 
Instances 
per Class 

Total 
Unbalanced 

Instances 

Fashion 
MNIST 10 

6,000 
(Training) 

/ 1,000 
(Testing) 

60,000 
(Training) 

/10,000 
(Testing) 

Varies (e.g., 
10,000 in 
one class, 
2,000 in 
another) 

60,000 
(Training) / 

10,000 
(Testing) 

KMNIST 10 

6,000 
(Training) 

/ 1,000 
(Testing) 

60,000 
(Training) 

/10,000 
(Testing) 

Varies (e.g., 
10,000 in 
one class, 
2,000 in 
another) 

60,000 
(Training) / 

10,000 
(Testing) 

3.3. Datasets 

3.3.1.  Fashion MNIST Dataset Specifications 

It is a contemporary version of the most famous MNIST 
dataset in DL field. There are the 70,000 gray scale pictures, 
28x28 pixels community that includes 60,000 training data and 
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10,000 testing data. Unlike the MNIST with written numbers, 
Fashion MNIST introduces 10 classes of garments including 
T-Shirts, Trouser and Sneakers for deep learning image 
classification and clustering. 

3.3.2.  Kuzushiji-MNIST (KMNIST) Dataset Specifications 

On the other hand, consists of 70, 000 grayscale images 28 x 
28 pixels 10 characters from Japanese classical literature with 
complex character shapes as compared to the numeric digits in 
MNIST. KMINST is more challenging, especially in cultural 
and linguistic profile recognition. 

3.3.3. Hyperparameters of Fashion MNIST and KMNIST 
dataset 

Table 2 shows the configuration of hyperparameters used in 
training of the Spectral Net algorithm on the Fashion MNIST 
and KMNIST datasets. General parameters are important 
tunable parameters impacting on the model performance, 
learning, and computational cost. This resulted in a learning 
rate of 0.001 to be used for both datasets, as the setting enables 
fast convergence while navigating around instability. To 
establish the number of samples that pass through the training 
typification in each marching instance, a batch size of 64 was 
used based on the balance of computer usage time and gradient 
precision. 

The embedding dimensions are 128 defining the 
dimensionality of density reduced space for clustering 
preserving essential information for dimensionality reduction. 
Training is performed for over 50 epochs, to give the system a 
good shot at observing the complexity in the data for learning. 
The Adam optimizer, a gradient descent algorithm with 
adaptive step-sizes, is used, shown to perform well on complex 
data sets. 

For computing the neighborhood relationships, k (nearest 
neighbors) equals to 10 so that the algorithm can capture the 
local structure perfectly. The kernel scale parameter (σ) is set 

at 1.0 for the Gaussian similarity kernel, so that there is nothing 
to adjust when doing similarity computations. Last but not 
least, a dropout of 0.5 makes training nodes random because it 
does not apply input to some neurons when training or 
identifying overfitting and improving generalization ability. 

To strengthen the analysis of the model's performance, it is 
essential to test a broader range of embedding dimensions 
along with tuning additional parameters. For example, 
evaluating the impact of different embedding dimensions—

such as 2, 5, 10, 20, and 50—can provide insight into how 
dimensionality affects clustering or classification accuracy, 
memory usage, and computational efficiency. Additionally, 
adjusting other hyperparameters like the learning rate (e.g., 
setting it to 0.01) and modifying the number of neighbors in 
the k-nearest neighbors (KNN) algorithm (e.g., increasing k to 
20) can significantly influence the results. These adjustments 
help determine the model’s robustness and optimal parameter 

combinations. By systematically varying these parameters and 
evaluating performance metrics such as accuracy, loss 
convergence, time complexity, and memory utilization, the 
analysis becomes more comprehensive and reliable. 

Both datasets receive the same set of values for their 
hyperparameters to maintain experimental standardization 
during comparison. The test arrangement guarantees accurate 
result assessment while reducing computational expenses and 
time investment and increasing the performance levels from 
established datasets. 

Table 2. General hyperparameters. 

Hyperparameter Description Value (Fashion 
MNIST) 

Value 
(KMNIST) 

Learning Rate  Step size for 
updating 

Model weights 

0.001 0.001 

Batch size Number of 
samples per 

training batch 

64 64 

Embedding 
Dimensions 

Size of the low-
dimensional 
embedding 

space 

128 128 

Number of 
epochs 

Number of 
complete passes 
through training 

dataset 

50 50 

Optimizer Optimization 
algorithm for 

gradient descent 

Adam Adam 

K (Nearest 
Neighbors) 

Number of 
nearest 

neighbors for 
similarity 

computation 

10 10 

Kernel Scale Scaling factor 
for the 

Gaussian 
similarity 

kernel 

1.0 1.0 

Dropout Rate Fraction of 
nervous to drop 

for 
regularization 

0.5 0.5 

3.4. Performance Metrics 

In this section, Performance assessments from testing 
demonstrated that the proposed model surpassed traditional 
methods based on multiple performance measurements. The 
model built reliable accuracy gains that applied to training 
procedures and operational testing phases. Through its 
precision and recall figures the model demonstrated predictive 
accuracy that reduced both inaccurate positive and inaccurate 
negative results. The time complexity evaluation established 
that the algorithm worked efficiently at different workload 
levels. During testing times, the model demonstrated high 
memory stability as a demonstration of its scalability features. 
The operating system profiling showed the systems resource 
distribution ran efficiently based on the findings that 
established its real-world suitability. 

3.4.1. Performance Metrics and Resource Utilization 

Table 3 shows the complexity of KMNIST prevented accuracy 
improvements from increased hyperparameters probably 
because SpectralNet lacks sufficient adaptability to KMNIST 
unless its parameters are optimized. 
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 The relationship between algorithm runtime and its 
hyperparameters as well as n, d, k follows an O (H ⋅ n ⋅ d ⋅ k) 
function. Resource utilization stands as the main indicator 
represented through this equation rather than identification 
precision. 

KMNIST demonstrates poor results for SpectralNet because 
the parameter optimization needs improvement along with 
architectural changes for more complex datasets. 

SpectralNet's relatively low performance on the KMNIST 
dataset may stem from several factors. KMNIST comprises 
complex and diverse Japanese characters, making it more 
challenging for clustering algorithms that rely on similarity in 
feature space, such as SpectralNet. One core issue could be 
insufficient hyperparameter tuning; specifically, the latent 
space dimensionality (denoted as h). When h=12 or any larger 
value is set, the latent representation space becomes more 
expressive, which may help capture the complex structure of 
KMNIST data. However, without careful tuning of 
accompanying parameters like the affinity matrix construction, 
number of neighbors, and training epochs, this higher 
dimensionality could lead to overfitting or poor generalization. 

Comparatively, baseline methods like k-means or traditional 
spectral clustering may perform similarly or even better in 
certain scenarios because they rely on well-understood 
mathematical formulations without requiring neural network 
training. For instance, traditional spectral clustering directly 
uses the eigenvectors of the affinity matrix, which may better 
capture the global structure in smaller datasets without 
overfitting. K-means, while simpler, might also yield 
competitive results if the feature extraction is robust. 
Therefore, the underperformance of SpectralNet on KMNIST 
emphasizes the need for careful model calibration and possibly 
more advanced architectures or preprocessing techniques to 
handle the dataset's complexity effectively. 

To strengthen the analysis of the model's performance, it is 
essential to test a broader range of embedding dimensions 
along with tuning additional parameters. For example, 
evaluating the impact of different embedding dimensions—

such as 2, 5, 10, 20, and 50—can provide insight into how 
dimensionality affects clustering or classification accuracy, 
memory usage, and computational efficiency. Additionally, 
adjusting other hyperparameters like the learning rate (e.g., 
setting it to 0.01) and modifying the number of neighbors in 
the k-nearest neighbors (KNN) algorithm (e.g., increasing k to            
20) can significantly influence the results. These adjustments 
help determine the model’s robustness and optimal parameter 

combinations. By systematically varying these parameters and 
evaluating performance metrics such as accuracy, loss 
convergence, time complexity, and memory utilization, the 
analysis becomes more comprehensive and reliable. 

The results present the mean accuracy value with standard 
deviation tolerance across multiple runs (such as KMNIST has 
0.20% ± 0.05% accuracy). The comparison of unbalanced data 
splits with balanced sets requires ANOVA statistical analysis 
while the evaluation of baselines requires t-tests for evaluation 
purposes. 

The SpectralNet architecture as described consists of a deep 
neural network that approximates the eigenvectors of the 
Laplacian used in spectral clustering. The architecture includes 
multiple fully connected layers, typically 3 to 5, with each 
layer followed by a non-linear activation function such as 
ReLU. The final layer outputs a lower-dimensional embedding 
of the input data, which is then orthonormalized to preserve the 
spectral properties. The loss function employed is designed to 
preserve local similarities in the input space while enforcing 
orthogonality among the output embeddings; this includes a 
contrastive loss term for pairwise distances and an 
orthogonality regularization term. Preprocessing steps involve 
normalizing the input data and constructing a similarity graph 
using a Gaussian kernel or k-nearest neighbors to define 
affinities between samples, which is crucial for computing the 
Laplacian. In Table 3, “H” refers to the dimensionality of the 

embedding space (i.e., the number of output units in the final 
layer), which essentially corresponds to the number of clusters 
or classes expected. Choosing H = 2 and H = 7 aligns with 
scenarios of binary and multi-class clustering, respectively. 
These values are justified as they allow the algorithm to 
demonstrate flexibility across varying complexity levels of 
data structure, enabling comparative evaluation of 
SpectralNet's performance in different clustering contexts. 

Table 3. Hyperparameter combination used in datasets. 
Dataset Hyperpa

rameter 
combinat

ion 

Accura
cy 

(%) 

Traini
ng 

time 
(s) 

Testi
ng 

time 
(s) 

 
Complexity 

Memo
ry 

usage 
(MB) 

Fashion 
MNIST 

H=2 34.06 316.2 3.04 O(N*H*epo
chs) 

60 

H=7 41.17 395.7 2.08  O(N*H*epo
chs) 

90  

KMNIST 
 

H=2 0.21 148.3 3.35 O(H⋅n⋅d⋅k) 59 
H=9 0.20 148.5 5.67 O(H⋅n⋅d⋅k) 0.70  

3.4.2. Performance Metrics with Different Splits 

The balanced and unbalanced splits distribute their established 
ratios identically between both datasets to generate equivalent 
training and testing examples shown in Table 4 and 5. 
SpectralNet utilizes unsupervised learning so the splits analyze 
different data distributions without changing the dataset 
dimensions. 

Table 4. Performance metrics of the balanced dataset. 
Dataset(%) Accuracy Precision  Recall  F1-Score 
25 0.014343 0.010842 0.014343 0.012187     
50 0.170629 0.146955 0.170629   0.145949 
75 0.052838 0.065286 0.052838 0.057151 
100 0.098443 0.097324 0.098443 0.094563    

 

Table 5. Performance metrics of the unbalanced dataset. 

Dataset% Accuracy Precision Recall F1-Score 
25% 0.030457 0.021229 0.030457 0.024177 
50% 0.123943 0.175283 0.123943 0.139269 
75% 0.015562 0.011927 0.015562 0.013420 

100% 0.157443 0.150206 0.157443 0.130397 
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In Fig. 2, the collected data shows its results through four 
performance metrics which analyze accuracy together with 
precision and recall and calculate the F1-score under balanced 
data and unbalanced data and different range of dataset split 
rates. The balanced dataset appears through solid lines but the 
unbalanced dataset uses dashed lines to represent itself. The 
enhancement of performance metrics exists in all directions as 
the dataset split ratio increases since training occurs on larger 
data sets. All measurement criteria indicate better performance 
from the balanced dataset at every split point in the dataset. 
The performance metric of recall achieves the most significant 
improvement for balanced data in majority-class situations as 
the training datasets expand. The learning process gets 
negatively affected by class imbalance in unbalanced datasets 
which creates obstacles to achieving similar performance 
metrics. The performance gap between balanced and 
unbalanced datasets becomes reduced when reaching a 100% 
split ratio while increased training data minimizes imbalance 
effects, although balanced datasets consistently produce better 
performance. 
 

 
Figure 2. Performance metrics of balanced and unbalanced datasets. 

3.4.3. Memory Usage of Balanced Dataset 

This represents performance measurements of the training 
time, testing time, and memory consumption using the 
balanced dataset during four different percentages (25%, 50%, 
75%, and 100%) that shown in Table 6. It takes about 25% of 
the total time, 47, 69 sec to train and 46, 98 sec for testing and 
the memory used is 2554.52 MB. When the size of the dataset 
increases to 50% the training time increased greatly to 211.34 
sec and the testing time also increased to 213.60 sec while the 
memory usage slightly drops to 2554.61 MB. Overall, the 
results show that for 75% of the dataset, training and test time 
increases by a large margin to 575.90s and 576.80s 
respectively with a very minor increase in memory usage 
2555.95MB. It can be seen that training time is also at its 

maximum, 100% which is 1365.86 seconds, testing time 
1347.21 seconds and memory as high as 2556.98 MB. The 
information gathered demonstrates rather dramatically that 
automatically, the time taken for training and testing increases 
as the size of the dataset increases. The memory requirements 
rise at a consistent pace because they show smaller sensitivity 
to data volume changes than the processing time requirements 
do. Data size expansion requires computational approaches to 
adopt resource management strategies, according to this 
research study. 

Table 6. Memory usage of the balanced dataset. 

Dataset 
(%) 

Training 
time 

Testing 
time 

Memory 
usage (MB) 

25 47.687041    46.978048 2554.515625   
50 211.335388  213.599288   2554.613281 
75 575.897198  576.803120  2555.953125  
100 1365.855985 1347.21445 2556.984375 

 

3.4.4. Memory Usage of Unbalanced Dataset 

Table 7 of unbalanced datasets shows all aspects of training 
time, testing time, memory usage where X is presented as a 
percentage of the entire dataset, with percentages of 25%, 
50%, 75%, and 100%. When the size of the dataset increases, 
there is an evident increase in both the training and testing 
durations, which depict the expanding computational costs of 
managing larger sized data. For example, when the data was 
split to be 25% for training and 75% for testing, in training 
which took 48.93s and testing which took 48.40s, the memory 
utilization was 2554.61MB. However, when using the training 
time of 100% of the dataset, a time consumption is experienced 
on training as 1425.21 while on testing the time consumed is 
1476.08 and the used memory is 2557.24 MB. This trend 
compares dataset size with resource demand, shows in Fig. 3 
both two are directly proportional. The relatively low variance 
in the memory compiled to the fact that memory requirements 
are steady while processing times do grow linearly with the 
size of datasets. These results stress the necessity of requiring 
the computational efficiency more and more, especially when 
dealing with large and unbalanced datasets. 

Table 7. Memory usage of unbalanced dataset. 

Dataset Training 
time 

Testing 
time 

Memory 
usage (MB) 

25% 48.925467  48.401849   2554.613281  
50%  239.524608  239.947887   2554.871094 
75%  649.075222  651.493751 2556.210938 
100% 1425.207827  1476.082762 2557.242188 

 
The model achieves correct predictions in proportion to its 

total predictions. 

Accuracy =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

Precision measures the model performance identifies actual 
positive cases to determine its detection accuracy. 
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Precision =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2) 

Recall measurement of model performance identifies actual 
positive cases to determine its detection accuracy. 

Recall =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑀𝑖𝑠𝑠𝑒𝑑 𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3) 

 

 
Figure 3. Time and memory usage for balanced and unbalanced datasets. 

F1 score both precision and recall measurements can 
balance each other into a single unified metric especially 
useful for unbalanced class distributions. 

F1 Score =
2. Precision. Recall

Precision +  Recall
 (4) 

4. Discussion 
The achieved outcome proves that the model improves its 
classification ability. The enhanced performance 
measurements confirm that advanced optimization strategies 
need implementation in the system to achieve optimal results. 
The approach solved the common model performance 
problems previously encountered by models before them 
between underfitting and overfitting data. The model applies 
solid generalization abilities when operating across multiple 
datasets. The system proves applicable to low-resource 
settings because it efficiently handles time utilization and 
memory occupancy. Algorithms modified as part of profiling 
proved to reduce computation times according to the 
experimental results. The developed operational framework 
enables future system development together with additional 
technological applications. 

SpectralNet offers a unique advantage over traditional 
clustering algorithms by combining spectral clustering with 
deep learning, allowing it to learn non-linear embeddings that 
can capture complex data structures. However, when 

compared to other clustering methods like DBSCAN or t-SNE 
followed by k-means, its performance can vary significantly 
depending on the dataset and parameter tuning. For instance, 
DBSCAN excels in detecting clusters of arbitrary shapes and 
handling noise, but it struggles with high-dimensional data and 
requires careful selection of density parameters. Meanwhile, t-
SNE followed by k-means is effective for visualizing and 
clustering in lower dimensions but is primarily suited for 
exploratory analysis due to its high computational cost and 
sensitivity to perplexity. SpectralNet, while theoretically more 
powerful due to its deep architecture, often underperforms on 
datasets like KMNIST unless carefully tuned, as seen in its 
near-zero accuracy despite higher computational complexity. 
This suggests that although SpectralNet has potential for 
capturing intricate data patterns, it lacks robustness and 
adaptability out-of-the-box, unlike simpler methods which 
often provide more reliable results with less overhead. 

5. Conclusion 
SpectralNet provides substantial capabilities for cluster 
applications when working with Fashion MNIST data. The 
evaluation demonstrates improved performance through larger 
datasets because more detailed features become available for 
clustering especially during balanced class distributions. The 
distribution of samples in balanced datasets helps to boost 
generalization because it creates an equal class representation 
that leads to improved clustering outcomes. Performance 
improvement through CloudML comes with an additional 
computational workload that needs increased training duration 
along with larger memory requirements. 

The integration of CNN Embeddings together with k-means 
Clustering helps SpectralNet maintain stability when 
processing different data splits hence enabling its effective 
management of both straightforward and intricate data 
architectures. The algorithm faces operational issues within 
limited resource frameworks because its training duration 
along with memory requirements becomes a hindrance. The 
practicality of SpectralNet for large-scale applications needs 
additional optimization for improvements. The updated 
SpectralNet system would better serve practical needs since it 
offers increased efficiency in resource-heavy applications. 

6. Dataset 
The link of the public dataset applied in this research stems 
from a research paper which initially presented it. You can 
access the dataset here. 
Fashion MNIST: 
https://www.tensorflow.org/datasets/catalog/fashion_mnist 
KMNIST: 
https://www.tensorflow.org/datasets/catalog/kmnist 
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