
47

Pakistan Journal of Engineering and Technology
ISSN (Print): 2664-2042; ISSN (Online): 2664-2050
Received: 2025-03-21
Accepted: 2025-05-08
https://doi.org/10.51846/vol8iss1pp47-54

Article

Performance Analysis of SpectralNet Algorithm on Fashion
MNIST and KMNIST Datasets: A Study on Clustering
Efficiency and Resource Utilization
Zenab Bibi and Mujeeb Ur Rehman *

Department of Computer Science, University of Management and Technology, Sialkot, Pakistan
* Correspondence: Mujeeb Ur Rehman (mujeeb.rehman@skt.umt.edu.pk)

Abstract: Unsupervised learning faces an essential data clustering challenge in high dimensions where SpectralNet stands as an effective
approach which combines deep learning with spectral clustering methods. A performance evaluation of SpectralNet measures its results on
Fashion MNIST and KMNIST with accuracy as well as computational costs and resource demands under multiple hyperparameter configurations.
The investigation examines how generalization changes with various distribution scenarios through the assessment of balanced versus unbalanced
dataset splits. Higher embedding dimension values lead to superior clustering precision, whereas it demands increased processor capacity. The
research reveals how SpectralNet handles accuracy-efficiency relationships in dataset analysis to demonstrate its practical capabilities for
complex information.

Keywords: Deep Learning, SpectralNet, Clustering, Balanced Dataset, MNIST

1. Introduction
1.1. Background and Motivation

The main function of unsupervised learning in its innovative
field consists of identifying hidden data structures by utilizing
clustering techniques. K-means clustering, along with other
traditional methods [1] struggles to apply to high-dimensional
databases because they require linear separability for their
operation [2]. The approach of spectral clustering takes data
points through graph transformation before using graph
Laplacian computations for clustering identification.
SpectralNet extends graph embedding principles through
neural network frameworks for effective learning of data
structures which allows the system to scale better when
processing extensive datasets. The series of Fashion MNIST
and KMNIST represent distinctive clustering difficulties
because Fashion MNIST contains clothing patterns and
KMNIST consists of intricate Japanese characters. The study
evaluates generalization changes by analyzing dataset split
imbalances through [3], [4].

This study explores different hyperparameter embedding
dimensions through testing their influence on system precision
and operational complexity as well as resource usage levels
[3], [4]. The research focuses on obtaining SpectralNet
assessment results that cover various operational
circumstances to create the groundwork for optimizing cluster
identification in multidimensional environments. SpectralNet
shapes dataset analysis through accuracy-efficiency
preferences to show its functionality for analyzing complex
information.

1.2. Literature Review

The clustering algorithms identify different data groups
through inherent patterns using features that are not defined by
human choices. The k-means grouping algorithm fails to
succeed in high-dimensional datasets because Euclidean
length loses its significance. The spectral clustering approach
resolves the distance limitations through similarity graph
construction and Laplacian matrix embedding analysis.
SpectralNet improves spectral clustering through deep
learning applications that optimize graph building and support
big data processing [1], [2]. The algorithm proves effective
with complex datasets, including Fashion MNIST and
KMNIST, that serve as common metrics for image
classification and clustering evaluations [3], [4]. KMNIST
requires identifying Japanese characters as part of its object
recognition process which differs from Fashion MNIST
because it uses apparel images.

Neural network embeddings helped deep learning improve
its clustering output, according to recent studies [5]. The
research shows that high-dimensional dataset work requires
algorithm performance optimization together with efficiency
improvement through hyperparameter tuning [6], [7]. The
performance evaluation of SpectralNet with both balanced and
unbalanced dataset splits in this research helps identify optimal
clustering model approaches for practical use as reported by
[8]. The split of datasets into balanced and unbalanced subsets
served to evaluate SpectralNet under different distribution
conditions [3], [4]. The SpectralNet neural network required

Pak. J. Eng. Technol. Vol. 8, No. 1, 2025

48

evaluation on each dataset with multiple parameter settings to
examine different embedding dimension values [2].

The essential requirement is to use models which handle
both general and local data distribution patterns. The main
advancement in SpectralNet comes from its capability to
replicate data spectral embeddings by using neural networks.
The computation of graph Laplacian eigenvectors in classical
spectral clustering becomes impossible for large datasets
because of its cubic time complexity. The method supports
modern techniques that search for scalable alternatives to
spectral decomposition methods [9], [10].

The local neighborhood relationships among data points
receive benefits from SpectralNet through its inclusion of a
pairwise similarity matrix. The relationships emerge through
the application of cosine similarity together with Gaussian
kernels and k-nearest neighbor graphs as distance metrics. The
learned spectral embeddings maintain the underlying
relationships because the network clusters data so that it
reflects its intrinsic manifold structure. The technique proves
essential in databases showing non-linear or non-convex class
boundary formations since this condition usually appears in
visual applications like image segmentation and document
clustering [11]. The successful implementation of
hyperparameter optimization stands crucial for achieving
superior performance from the algorithm. The performance of
spectral clustering depends strongly on learning rate along
with number of epochs and embedding dimensions and
dropout rate values because these parameters affect both
convergence speed and generalization performance and system
resource utilization. Since KMNIST data needs identification
of delicate Japanese symbols it falls into the linguistic domain.
Extended limitations occur for clustering models when dealing
with these domain differences because they need both accurate
classification and consistent functionality across different
domains. A comprehensive evaluation of SpectralNet's domain
generalization capabilities can be achieved by conducting tests
among different data categories that include Fashion-MNIST
and KMNIST and CIFAR-100 [4], [12].

The process of dimension expansion enhances the detection
of complex data patterns yet simultaneously increases
computation expenses and introduces possibility of
performance degradation. Hyperparameter optimization
produces benefits that help researchers balance the relationship
between numeric precision of clusters and training speed along
with resource consumption [13], [14].

The study contributes practical knowledge through its
assessment of balanced versus unbalanced dataset splits. The
use of balanced datasets ensures meaningful quality
assessment of clustering methods because they create even
distributions of classes that mimic perfect clustering scenarios.
The deep clustering method SpectralNet requires additional
data treatment approaches alongside regularization techniques
to function adequately when processing unbalanced data
according to recent findings in [15], [16].

The study adds to the body of knowledge regarding flexible
clustering methods that do not belong to specific domains in
modern machine learning systems. Unsupervised learning

methods show practical value in detecting anomalies and
providing recommendations because they process complex big
data sets which suits applications in bioinformatics and IoT
and recommendation platforms as reported in [17], [18].

1.3. Contribution

The research evaluates SpectralNet algorithm performance
using Fashion MNIST and KMNIST datasets by adjusting an
important parameter that influences accuracy levels. This
research shows how modifications in algorithm execution
occur across different parameter distributions from precision
assessments generated through hyperparameter changes. The
research evaluates model evaluation and
robustness/generalizability transformations to enable the
growth of spectral-based learning procedures.

2. Materials and Methods
The SpectralNet application to Fashion MNIST and KMNIST
datasets starts from data import through preprocessing and
then moves to model training followed by testing and ends in
evaluation.

2.1. Dataset

The Fashion MNIST and KMNIST datasets should be loaded
since they contain grayscale images intended for classification
tasks. The analysis requires complete information provided by
Fashion MNIST.

2.2. Preprocessing

The training process needs essential data preparation steps
which transform raw data into training-ready condition.

2.3. Load the Dataset

The dimensions for images must be adjusted to a standard
form. The process converts images into vector-form so that
they become compatible with neural network usage.
Caretakers can normalize pixels because the range should be
between 0 and 1.

2.4. Extract Labels for Evaluation Purposes

The normalization process should be applied together with
split generation at ratios from 25% to 100% in 25%
increments. Testing performance across different data
distributions requires training and testing splits with ratios of
50/50, 60/40, 70/30 and 80/20 and 90/10.

2.5. Model Training

The SpectralNet model receives training through different
stages. Neural Network Training serves as a method to obtain
the embeddings. The dataset experiences Dimensionality
Reduction that transforms it into lower-dimensional space. The
clustering process under Unsupervised Learning functions
without requiring any labeled data.

2.6. Optimization to Refine Model Performance

The model receives Hyperparameter Tuning that allows
adjustments of learning rate values and embedding dimension

Vol. 8, No. 1, 2025 Pak. J. Eng. Technol.

49

values. Operate the Self-Organizing Maps (SOM) alongside
Spectral Clustering techniques during implementation. A K-
means clustering procedure should operate on dimensions that
were reduced beforehand. Use matrices to perform eigenvalue
decomposition of Laplacian matrices for achieving optimal
clustering results.

2.7. Testing

The trained model should be used for testing unseen data to
determine its generalization abilities. The model receives
newly introduced data to classify items through its acquired
features.

2.8. Evaluation

The model performance assessment should utilize these
evaluation metrics: Confusion Matrix:

• Precision
• Recall
• F1 Score
• Accuracy
• Memory Usage

The methodology conducts a systematic evaluation of
SpectralNet through data split tests and hyperparameter
adjustments which show its ability to classify both Fashion
MNIST and KMNIST high-dimensional image datasets.

Fig. 1 shows in detail how SpectralNet operates to analyze
classification outcomes by processing Fashion MNIST and
KMNIST datasets. The algorithm starts with importing both
datasets which leads to building a full Fashion MNIST
database. The dataset together with KMNIST receives
preprocessing treatment that consists of normalization steps
and class distribution balancing/unbalancing procedures using
defined sample partitioning methods. The preprocessed data
goes through the training model by completing essential
operations for dataset loading while preparing input and output
alongside normalization and missing value handling and label
encoding.

Figure 1. Methodology diagram.

The training method combines steps for neural network
learning with unsupervised methods, clustering techniques and
hyperparameter optimization. SOM together with Spectral
Clustering joins forces in this system for improved clustering
operations through the combination of dimensionality
reduction and k-means clustering and Laplacian matrices and
eigenvalue decomposition methods.

After training concludes, the model advances into the testing
mode to classify different input data using the acquired
knowledge base. After classifying the data, the system
undergoes complete evaluation using precision, recall, F1
score, accuracy and confusion matrix metrics and memory
usage evaluation. The entire framework provides an organized
process to evaluate SpectralNet's ability to categorize
handwritten character information sourced from various
origins using multiple hyperparameters.

3. Experiments
3.1. Configuration and Tools

The code was run on a PC with an operating system of
Windows 10 home single language, with an Intel(R) Core
(TM) i5-6300U CPU @ 2.40GHz, 8GB RAM and 512 GB
SSD storage. This environment was set with Python 3.8 and
the TensorFlow framework 2.6, other libraries are NumPy and
Matplotlib. The Fashion MNIST dataset is available on the
TensorFlow/Kera’s dataset repository or through the provided
GitHub link.

3.2. Balanced and Imbalanced Dataset Instances

Each class contains equal numbers of instances when the
distribution remains balanced in the design as per shown in
Table 1. A truly unbalanced setup preserves all instances yet
specific classes possess substantially greater numbers of
instances than others do. SpectralNet adopts clustering
algorithms to tackle conditional imbalance while upholding
the performance system found in unsupervised learning
structures.

Table 1. Balanced and unbalanced dataset.

Dataset Total
Classes

Balanced
Instances
per Class

Total
Balanced
Instances

Unbalanced
Instances
per Class

Total
Unbalanced

Instances

Fashion
MNIST 10

6,000
(Training)

/ 1,000
(Testing)

60,000
(Training)

/10,000
(Testing)

Varies (e.g.,
10,000 in
one class,
2,000 in
another)

60,000
(Training) /

10,000
(Testing)

KMNIST 10

6,000
(Training)

/ 1,000
(Testing)

60,000
(Training)

/10,000
(Testing)

Varies (e.g.,
10,000 in
one class,
2,000 in
another)

60,000
(Training) /

10,000
(Testing)

3.3. Datasets

3.3.1. Fashion MNIST Dataset Specifications

It is a contemporary version of the most famous MNIST
dataset in DL field. There are the 70,000 gray scale pictures,
28x28 pixels community that includes 60,000 training data and

Pak. J. Eng. Technol. Vol. 8, No. 1, 2025

50

10,000 testing data. Unlike the MNIST with written numbers,
Fashion MNIST introduces 10 classes of garments including
T-Shirts, Trouser and Sneakers for deep learning image
classification and clustering.

3.3.2. Kuzushiji-MNIST (KMNIST) Dataset Specifications

On the other hand, consists of 70, 000 grayscale images 28 x
28 pixels 10 characters from Japanese classical literature with
complex character shapes as compared to the numeric digits in
MNIST. KMINST is more challenging, especially in cultural
and linguistic profile recognition.

3.3.3. Hyperparameters of Fashion MNIST and KMNIST
dataset

Table 2 shows the configuration of hyperparameters used in
training of the Spectral Net algorithm on the Fashion MNIST
and KMNIST datasets. General parameters are important
tunable parameters impacting on the model performance,
learning, and computational cost. This resulted in a learning
rate of 0.001 to be used for both datasets, as the setting enables
fast convergence while navigating around instability. To
establish the number of samples that pass through the training
typification in each marching instance, a batch size of 64 was
used based on the balance of computer usage time and gradient
precision.

The embedding dimensions are 128 defining the
dimensionality of density reduced space for clustering
preserving essential information for dimensionality reduction.
Training is performed for over 50 epochs, to give the system a
good shot at observing the complexity in the data for learning.
The Adam optimizer, a gradient descent algorithm with
adaptive step-sizes, is used, shown to perform well on complex
data sets.

For computing the neighborhood relationships, k (nearest
neighbors) equals to 10 so that the algorithm can capture the
local structure perfectly. The kernel scale parameter (σ) is set

at 1.0 for the Gaussian similarity kernel, so that there is nothing
to adjust when doing similarity computations. Last but not
least, a dropout of 0.5 makes training nodes random because it
does not apply input to some neurons when training or
identifying overfitting and improving generalization ability.

To strengthen the analysis of the model's performance, it is
essential to test a broader range of embedding dimensions
along with tuning additional parameters. For example,
evaluating the impact of different embedding dimensions—

such as 2, 5, 10, 20, and 50—can provide insight into how
dimensionality affects clustering or classification accuracy,
memory usage, and computational efficiency. Additionally,
adjusting other hyperparameters like the learning rate (e.g.,
setting it to 0.01) and modifying the number of neighbors in
the k-nearest neighbors (KNN) algorithm (e.g., increasing k to
20) can significantly influence the results. These adjustments
help determine the model’s robustness and optimal parameter

combinations. By systematically varying these parameters and
evaluating performance metrics such as accuracy, loss
convergence, time complexity, and memory utilization, the
analysis becomes more comprehensive and reliable.

Both datasets receive the same set of values for their
hyperparameters to maintain experimental standardization
during comparison. The test arrangement guarantees accurate
result assessment while reducing computational expenses and
time investment and increasing the performance levels from
established datasets.

Table 2. General hyperparameters.

Hyperparameter Description Value (Fashion
MNIST)

Value
(KMNIST)

Learning Rate Step size for
updating

Model weights

0.001 0.001

Batch size Number of
samples per

training batch

64 64

Embedding
Dimensions

Size of the low-
dimensional
embedding

space

128 128

Number of
epochs

Number of
complete passes
through training

dataset

50 50

Optimizer Optimization
algorithm for

gradient descent

Adam Adam

K (Nearest
Neighbors)

Number of
nearest

neighbors for
similarity

computation

10 10

Kernel Scale Scaling factor
for the

Gaussian
similarity

kernel

1.0 1.0

Dropout Rate Fraction of
nervous to drop

for
regularization

0.5 0.5

3.4. Performance Metrics

In this section, Performance assessments from testing
demonstrated that the proposed model surpassed traditional
methods based on multiple performance measurements. The
model built reliable accuracy gains that applied to training
procedures and operational testing phases. Through its
precision and recall figures the model demonstrated predictive
accuracy that reduced both inaccurate positive and inaccurate
negative results. The time complexity evaluation established
that the algorithm worked efficiently at different workload
levels. During testing times, the model demonstrated high
memory stability as a demonstration of its scalability features.
The operating system profiling showed the systems resource
distribution ran efficiently based on the findings that
established its real-world suitability.

3.4.1. Performance Metrics and Resource Utilization

Table 3 shows the complexity of KMNIST prevented accuracy
improvements from increased hyperparameters probably
because SpectralNet lacks sufficient adaptability to KMNIST
unless its parameters are optimized.

Vol. 8, No. 1, 2025 Pak. J. Eng. Technol.

51

 The relationship between algorithm runtime and its
hyperparameters as well as n, d, k follows an O (H ⋅ n ⋅ d ⋅ k)
function. Resource utilization stands as the main indicator
represented through this equation rather than identification
precision.

KMNIST demonstrates poor results for SpectralNet because
the parameter optimization needs improvement along with
architectural changes for more complex datasets.

SpectralNet's relatively low performance on the KMNIST
dataset may stem from several factors. KMNIST comprises
complex and diverse Japanese characters, making it more
challenging for clustering algorithms that rely on similarity in
feature space, such as SpectralNet. One core issue could be
insufficient hyperparameter tuning; specifically, the latent
space dimensionality (denoted as h). When h=12 or any larger
value is set, the latent representation space becomes more
expressive, which may help capture the complex structure of
KMNIST data. However, without careful tuning of
accompanying parameters like the affinity matrix construction,
number of neighbors, and training epochs, this higher
dimensionality could lead to overfitting or poor generalization.

Comparatively, baseline methods like k-means or traditional
spectral clustering may perform similarly or even better in
certain scenarios because they rely on well-understood
mathematical formulations without requiring neural network
training. For instance, traditional spectral clustering directly
uses the eigenvectors of the affinity matrix, which may better
capture the global structure in smaller datasets without
overfitting. K-means, while simpler, might also yield
competitive results if the feature extraction is robust.
Therefore, the underperformance of SpectralNet on KMNIST
emphasizes the need for careful model calibration and possibly
more advanced architectures or preprocessing techniques to
handle the dataset's complexity effectively.

To strengthen the analysis of the model's performance, it is
essential to test a broader range of embedding dimensions
along with tuning additional parameters. For example,
evaluating the impact of different embedding dimensions—

such as 2, 5, 10, 20, and 50—can provide insight into how
dimensionality affects clustering or classification accuracy,
memory usage, and computational efficiency. Additionally,
adjusting other hyperparameters like the learning rate (e.g.,
setting it to 0.01) and modifying the number of neighbors in
the k-nearest neighbors (KNN) algorithm (e.g., increasing k to
20) can significantly influence the results. These adjustments
help determine the model’s robustness and optimal parameter

combinations. By systematically varying these parameters and
evaluating performance metrics such as accuracy, loss
convergence, time complexity, and memory utilization, the
analysis becomes more comprehensive and reliable.

The results present the mean accuracy value with standard
deviation tolerance across multiple runs (such as KMNIST has
0.20% ± 0.05% accuracy). The comparison of unbalanced data
splits with balanced sets requires ANOVA statistical analysis
while the evaluation of baselines requires t-tests for evaluation
purposes.

The SpectralNet architecture as described consists of a deep
neural network that approximates the eigenvectors of the
Laplacian used in spectral clustering. The architecture includes
multiple fully connected layers, typically 3 to 5, with each
layer followed by a non-linear activation function such as
ReLU. The final layer outputs a lower-dimensional embedding
of the input data, which is then orthonormalized to preserve the
spectral properties. The loss function employed is designed to
preserve local similarities in the input space while enforcing
orthogonality among the output embeddings; this includes a
contrastive loss term for pairwise distances and an
orthogonality regularization term. Preprocessing steps involve
normalizing the input data and constructing a similarity graph
using a Gaussian kernel or k-nearest neighbors to define
affinities between samples, which is crucial for computing the
Laplacian. In Table 3, “H” refers to the dimensionality of the

embedding space (i.e., the number of output units in the final
layer), which essentially corresponds to the number of clusters
or classes expected. Choosing H = 2 and H = 7 aligns with
scenarios of binary and multi-class clustering, respectively.
These values are justified as they allow the algorithm to
demonstrate flexibility across varying complexity levels of
data structure, enabling comparative evaluation of
SpectralNet's performance in different clustering contexts.

Table 3. Hyperparameter combination used in datasets.
Dataset Hyperpa

rameter
combinat

ion

Accura
cy

(%)

Traini
ng

time
(s)

Testi
ng

time
(s)

Complexity

Memo
ry

usage
(MB)

Fashion
MNIST

H=2 34.06 316.2 3.04 O(N*H*epo
chs)

60

H=7 41.17 395.7 2.08 O(N*H*epo
chs)

90

KMNIST

H=2 0.21 148.3 3.35 O(H⋅n⋅d⋅k) 59
H=9 0.20 148.5 5.67 O(H⋅n⋅d⋅k) 0.70

3.4.2. Performance Metrics with Different Splits

The balanced and unbalanced splits distribute their established
ratios identically between both datasets to generate equivalent
training and testing examples shown in Table 4 and 5.
SpectralNet utilizes unsupervised learning so the splits analyze
different data distributions without changing the dataset
dimensions.

Table 4. Performance metrics of the balanced dataset.
Dataset(%) Accuracy Precision Recall F1-Score
25 0.014343 0.010842 0.014343 0.012187
50 0.170629 0.146955 0.170629 0.145949
75 0.052838 0.065286 0.052838 0.057151
100 0.098443 0.097324 0.098443 0.094563

Table 5. Performance metrics of the unbalanced dataset.

Dataset% Accuracy Precision Recall F1-Score
25% 0.030457 0.021229 0.030457 0.024177
50% 0.123943 0.175283 0.123943 0.139269
75% 0.015562 0.011927 0.015562 0.013420

100% 0.157443 0.150206 0.157443 0.130397

Pak. J. Eng. Technol. Vol. 8, No. 1, 2025

52

In Fig. 2, the collected data shows its results through four
performance metrics which analyze accuracy together with
precision and recall and calculate the F1-score under balanced
data and unbalanced data and different range of dataset split
rates. The balanced dataset appears through solid lines but the
unbalanced dataset uses dashed lines to represent itself. The
enhancement of performance metrics exists in all directions as
the dataset split ratio increases since training occurs on larger
data sets. All measurement criteria indicate better performance
from the balanced dataset at every split point in the dataset.
The performance metric of recall achieves the most significant
improvement for balanced data in majority-class situations as
the training datasets expand. The learning process gets
negatively affected by class imbalance in unbalanced datasets
which creates obstacles to achieving similar performance
metrics. The performance gap between balanced and
unbalanced datasets becomes reduced when reaching a 100%
split ratio while increased training data minimizes imbalance
effects, although balanced datasets consistently produce better
performance.

Figure 2. Performance metrics of balanced and unbalanced datasets.

3.4.3. Memory Usage of Balanced Dataset

This represents performance measurements of the training
time, testing time, and memory consumption using the
balanced dataset during four different percentages (25%, 50%,
75%, and 100%) that shown in Table 6. It takes about 25% of
the total time, 47, 69 sec to train and 46, 98 sec for testing and
the memory used is 2554.52 MB. When the size of the dataset
increases to 50% the training time increased greatly to 211.34
sec and the testing time also increased to 213.60 sec while the
memory usage slightly drops to 2554.61 MB. Overall, the
results show that for 75% of the dataset, training and test time
increases by a large margin to 575.90s and 576.80s
respectively with a very minor increase in memory usage
2555.95MB. It can be seen that training time is also at its

maximum, 100% which is 1365.86 seconds, testing time
1347.21 seconds and memory as high as 2556.98 MB. The
information gathered demonstrates rather dramatically that
automatically, the time taken for training and testing increases
as the size of the dataset increases. The memory requirements
rise at a consistent pace because they show smaller sensitivity
to data volume changes than the processing time requirements
do. Data size expansion requires computational approaches to
adopt resource management strategies, according to this
research study.

Table 6. Memory usage of the balanced dataset.

Dataset
(%)

Training
time

Testing
time

Memory
usage (MB)

25 47.687041 46.978048 2554.515625
50 211.335388 213.599288 2554.613281
75 575.897198 576.803120 2555.953125
100 1365.855985 1347.21445 2556.984375

3.4.4. Memory Usage of Unbalanced Dataset

Table 7 of unbalanced datasets shows all aspects of training
time, testing time, memory usage where X is presented as a
percentage of the entire dataset, with percentages of 25%,
50%, 75%, and 100%. When the size of the dataset increases,
there is an evident increase in both the training and testing
durations, which depict the expanding computational costs of
managing larger sized data. For example, when the data was
split to be 25% for training and 75% for testing, in training
which took 48.93s and testing which took 48.40s, the memory
utilization was 2554.61MB. However, when using the training
time of 100% of the dataset, a time consumption is experienced
on training as 1425.21 while on testing the time consumed is
1476.08 and the used memory is 2557.24 MB. This trend
compares dataset size with resource demand, shows in Fig. 3
both two are directly proportional. The relatively low variance
in the memory compiled to the fact that memory requirements
are steady while processing times do grow linearly with the
size of datasets. These results stress the necessity of requiring
the computational efficiency more and more, especially when
dealing with large and unbalanced datasets.

Table 7. Memory usage of unbalanced dataset.

Dataset Training
time

Testing
time

Memory
usage (MB)

25% 48.925467 48.401849 2554.613281
50% 239.524608 239.947887 2554.871094
75% 649.075222 651.493751 2556.210938
100% 1425.207827 1476.082762 2557.242188

The model achieves correct predictions in proportion to its

total predictions.

Accuracy =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1)

Precision measures the model performance identifies actual
positive cases to determine its detection accuracy.

Vol. 8, No. 1, 2025 Pak. J. Eng. Technol.

53

Precision =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2)

Recall measurement of model performance identifies actual
positive cases to determine its detection accuracy.

Recall =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑀𝑖𝑠𝑠𝑒𝑑 𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3)

Figure 3. Time and memory usage for balanced and unbalanced datasets.

F1 score both precision and recall measurements can
balance each other into a single unified metric especially
useful for unbalanced class distributions.

F1 Score =
2. Precision. Recall

Precision + Recall
 (4)

4. Discussion
The achieved outcome proves that the model improves its
classification ability. The enhanced performance
measurements confirm that advanced optimization strategies
need implementation in the system to achieve optimal results.
The approach solved the common model performance
problems previously encountered by models before them
between underfitting and overfitting data. The model applies
solid generalization abilities when operating across multiple
datasets. The system proves applicable to low-resource
settings because it efficiently handles time utilization and
memory occupancy. Algorithms modified as part of profiling
proved to reduce computation times according to the
experimental results. The developed operational framework
enables future system development together with additional
technological applications.

SpectralNet offers a unique advantage over traditional
clustering algorithms by combining spectral clustering with
deep learning, allowing it to learn non-linear embeddings that
can capture complex data structures. However, when

compared to other clustering methods like DBSCAN or t-SNE
followed by k-means, its performance can vary significantly
depending on the dataset and parameter tuning. For instance,
DBSCAN excels in detecting clusters of arbitrary shapes and
handling noise, but it struggles with high-dimensional data and
requires careful selection of density parameters. Meanwhile, t-
SNE followed by k-means is effective for visualizing and
clustering in lower dimensions but is primarily suited for
exploratory analysis due to its high computational cost and
sensitivity to perplexity. SpectralNet, while theoretically more
powerful due to its deep architecture, often underperforms on
datasets like KMNIST unless carefully tuned, as seen in its
near-zero accuracy despite higher computational complexity.
This suggests that although SpectralNet has potential for
capturing intricate data patterns, it lacks robustness and
adaptability out-of-the-box, unlike simpler methods which
often provide more reliable results with less overhead.

5. Conclusion
SpectralNet provides substantial capabilities for cluster
applications when working with Fashion MNIST data. The
evaluation demonstrates improved performance through larger
datasets because more detailed features become available for
clustering especially during balanced class distributions. The
distribution of samples in balanced datasets helps to boost
generalization because it creates an equal class representation
that leads to improved clustering outcomes. Performance
improvement through CloudML comes with an additional
computational workload that needs increased training duration
along with larger memory requirements.

The integration of CNN Embeddings together with k-means
Clustering helps SpectralNet maintain stability when
processing different data splits hence enabling its effective
management of both straightforward and intricate data
architectures. The algorithm faces operational issues within
limited resource frameworks because its training duration
along with memory requirements becomes a hindrance. The
practicality of SpectralNet for large-scale applications needs
additional optimization for improvements. The updated
SpectralNet system would better serve practical needs since it
offers increased efficiency in resource-heavy applications.

6. Dataset
The link of the public dataset applied in this research stems
from a research paper which initially presented it. You can
access the dataset here.
Fashion MNIST:
https://www.tensorflow.org/datasets/catalog/fashion_mnist
KMNIST:
https://www.tensorflow.org/datasets/catalog/kmnist

Funding: This research received no external funding.

Data Availability Statement: The datasets used during the current
study are available from the corresponding author on reasonable
request.

Ethical Statement: This research adheres to the ethical guidelines
established by the Committee on Publication Ethics (COPE). All

https://www.tensorflow.org/datasets/catalog/fashion_mnist
https://www.tensorflow.org/datasets/catalog/kmnist

Pak. J. Eng. Technol. Vol. 8, No. 1, 2025

54

procedures and methodologies used in this study comply with COPE
standards, ensuring transparency, integrity, and respect for all
participants involved.

Conflicts of Interest: The authors declare no conflict of interest.

References
[1] T. Nguyen, X. Yin, and D. Lee, “Scalable Spectral Clustering with Deep

Embedding and Landmark Selection,” Proc. 29th ACM Int. Conf. on
Information & Knowledge Management (CIKM), pp. 1665–1674, 2020,
doi: 10.1145/3340531.3411962.

[2] Y. Zhang, J. Lin, and Z. Liu, “Deep Spectral Embedding Clustering with

Efficient Pairwise Constraints,” Pattern Recognit., vol. 114, p. 107873,
2021, doi: 10.1016/j.patcog.2021.107873.

[3] H. Chen and Y. Liu, “Cross-Domain Visual Clustering Using Adaptive
Deep Networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 12,
pp. 5497–5511, 2021, doi: 10.1109/TNNLS.2020.3034911.

[4] Y. Kim, S. Lee, and S. Yoon, “Meta-Learning for Few-Shot Clustering
with Visual and Linguistic Datasets,” Pattern Recognit., vol. 138, p.
109375, 2023, doi: 10.1016/j.patcog.2023.109375.

[5] L. Wang, X. Chen, and Y. Zhao, “Manifold Learning with Spectral

Clustering Networks,” Neural Netw., vol. 146, pp. 205–217, 2022, doi:
10.1016/j.neunet.2021.10.002.

[6] C. Zhao, H. Xu, and D. Li, “Hyperparameter Optimization in Deep

Clustering: A Survey,” ACM Comput. Surv., vol. 55, no. 7, pp. 1–36,
2022, doi: 10.1145/3522572.

[7] Q. Li, Z. Han, and X. Wu, “Deeper Insights into Spectral Embedding for

Clustering,” Neurocomputing, vol. 384, pp. 69–81, 2020, doi:
10.1016/j.neucom.2019.11.026.

[8] M. Ahmed, T. Rahman, and M. Khan, “Clustering Imbalanced Data with

Deep Neural Architectures,” J. Big Data, vol. 9, no. 1, pp. 1–19, 2022,
doi: 10.1186/s40537-022-00565-6.

[9] Y. Li, H. Wang, and D. Zhang, “Efficient Large-Scale Spectral
Clustering via Landmark-Based Embedding,” IEEE Access, vol. 8, pp.
104120–104131, 2020, doi: 10.1109/ACCESS.2020.2997741.

[10] S. Gong, H. Huang, and J. Wang, “Deep Feature Learning for Graph-
Based Clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no.
6, pp. 2467–2478, Jun. 2021, doi: 10.1109/TNNLS.2020.2972502.

[11] X. Zhu, Y. Shi, and Z. Wu, “Graph Convolutional Networks for

Unsupervised Visual Clustering,” Neurocomputing, vol. 408, pp. 64–74,
2020, doi: 10.1016/j.neucom.2019.12.066.

[12] H. Li, M. Xue, and X. Gu, “Generalizing Deep Clustering Across

Domains via Cross-Modal Self-Supervision,” IEEE Trans. Multimed.,
vol. 24, pp. 2470–2481, 2022, doi: 10.1109/TMM.2021.3117752.

[13] M. Alokaili and H. S. Al-Muhtadi, “Trade-Off Optimization in Deep
Clustering Models for IoT Applications,” IEEE Internet Things J., vol.
9, no. 13, pp. 10291–10301, Jul. 2022, doi:
10.1109/JIOT.2021.3113558.

[14] A. R. Hashmi and A. Hussain, “Optimizing SpectralNet for High-
Dimensional Data: Performance, Complexity, and Hyperparameter
Tuning,” IEEE Access, vol. 10, pp. 105112–105123, 2022, doi:
10.1109/ACCESS.2022.3202462.

[15] H. Wu, W. Zhang, and H. Zhu, “Imbalanced Data Clustering with

Adaptive Deep Representation Learning,” Knowl.-Based Syst., vol. 229,
p. 107339, 2021, doi: 10.1016/j.knosys.2021.107339.

[16] J. Luo, Y. Zhang, and X. Liu, “Robust Deep Clustering with Dynamic

Sample Reweighting for Imbalanced Data,” IEEE Trans. Pattern Anal.
Mach. Intell., early access, 2023, doi: 10.1109/TPAMI.2023.3246789.

[17] X. Zhang, Y. Wang, and J. Liu, “Deep Learning-Based Unsupervised
Clustering for Bioinformatics,” Brief. Bioinform., vol. 21, no. 6, pp.
2063–2080, 2020, doi: 10.1093/bib/bbz140.

[18] M. U. Rehman, M. Waseem, A. Sattar, and M. Ullah, “Anomaly

Detection Algorithms for Low-Dimensional and High-Dimensional
Data: A Critical Study”, PakJET, vol. 6, no. 4, pp. 42–49, Mar. 2024.

This work is licensed under a Creative Commons
Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

	1. Introduction
	1.1. Background and Motivation
	1.2. Literature Review
	1.3. Contribution

	2. Materials and Methods
	2.1. Dataset
	2.2. Preprocessing
	2.3. Load the Dataset
	2.4. Extract Labels for Evaluation Purposes
	2.5. Model Training
	2.6. Optimization to Refine Model Performance
	2.7. Testing
	2.8. Evaluation

	3. Experiments
	3.1. Configuration and Tools
	3.2. Balanced and Imbalanced Dataset Instances
	3.3. Datasets
	3.3.1. Fashion MNIST Dataset Specifications
	3.3.2. Kuzushiji-MNIST (KMNIST) Dataset Specifications
	3.3.3. Hyperparameters of Fashion MNIST and KMNIST dataset

	3.4. Performance Metrics
	3.4.1. Performance Metrics and Resource Utilization
	3.4.2. Performance Metrics with Different Splits
	3.4.3. Memory Usage of Balanced Dataset
	3.4.4. Memory Usage of Unbalanced Dataset

	4. Discussion
	5. Conclusion
	6. Dataset
	References

